Skip to main content
Log in

Morpho-taxonomical and molecular assessment of Musa genotypes from north-east India by morphological and inter-retrotransposon amplified polymorphism markers

  • Original Article
  • Published:
Plant Systematics and Evolution Aims and scope Submit manuscript

Abstract

The states of north-eastern region of India are home to several wild and cultivated bananas. There is a dearth of information on the genetic diversity of Musa resources of the region to assist in crop improvement programmes. Twenty-five genotypes of Musaceae accessions including one Ensete species maintained at Institute of Bioresources and Sustainable Development (IBSD), Imphal, were characterized based on 60 morpho-taxonomic characters and seven inter-retrotransposon amplified polymorphism (IRAP) primer combinations. The morphological data were presented in the form of hierarchical clusters and principal components. Hierarchically, the Musa genotypes can be grouped into distinctive clusters, and while the first four principal components could explain 58.66 % of variation of the total morphological traits studied. A total of 337 amplicons were generated using 12 IRAP primer combinations with an average percentage polymorphism of 96.12. The molecular markers used in this study could reveal intra- and inter-group diversity among the genotypes with similarity coefficients ranging from 0.16 to 0.90. It could also differentiate the clusters of all the edible cultivated Musa genotypes from the wild/semi-wild ancestors. Thus, the chosen parameters seem to be especially important in the varietal or genotype identifications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Almajali D, Ghani AHA, Migdadi H (2012) Evaluation of genetic diversity among Jordanian fig germplasm accessions by morphological traits and ISSR markers. Sci Hortic 147:8–19. doi:10.1016/j.scientia.2012.08.029

    Article  CAS  Google Scholar 

  • Ashalatha SN, Teo CH, Schwarzacher T, Heslop-Harrison JS (2005) Genome classification of banana cultivars from South India using IRAP markers. Euphytica 144:285–290

    Article  Google Scholar 

  • Bhargava A, Shukla S, Rajan S, Ohri D (2007) Genetic diversity for morphological and quality traits in quinoa (Chenopodium quinoa Willd.) germplasm. Genet Res Crop Evol 54:167–173

    Article  Google Scholar 

  • Bhattachaya S, Bandopadhyay TK, Ghosh PD (2010) Efficiency of RAPD and ISSR markers in assessment of molecular diversity in elite germplasms of Cymbopogon winterianus across West Bengal, India. Emir J Food Agric 221:13–24

    Google Scholar 

  • Boronnikova SV, Kalendar RN (2010) Using IRAP markers for analysis of genetic variability in populations of resource and rare species of plants. Russ J Genet 46:36–42

    Article  CAS  Google Scholar 

  • Cornejo JC, Rosello S, Nuez F (2013) Phenotypic and genetic diversity of Spanish tomato landraces. Sci Hortic 162:150–164. doi:10.1016/j.scienta.2013.07.044

    Article  Google Scholar 

  • Daniells J, Jenny C, Karamura D, Tomekpe K (2001) Musalogue: a catalogue of Musa germplasm. Diversity in the genus Musa. In: Arnaud E, Sharrock S (eds), International Network for the Improvement of Banana and Plantain, Montpellier, France

  • De Langhe E (2000) Diversity in the genus Musa: its significance and its potential. Acta Hort 540:89–97

    Google Scholar 

  • de Souza EH, de Carvalho Costa MAP, Souza FVD, Junior DSC, Amorim EP, e Silva SDO, Santos-Serejo JAD (2011) Genetic variability of banana with ornamental potential. Euphytica 184:355–367. doi:10.1007/s10681-05534

    Article  Google Scholar 

  • Doyle JJ, Doyle JL (1990) A rapid total DNA preparation procedure for fresh plant tissue. Focus 12:13–15

    Google Scholar 

  • Engels JMM (1996) The identification of cacao cultivars. Acta Hort 182:195–202

    Google Scholar 

  • Guo X, Elston RC (1999) Linkage information content of polymorphic genetic markers. Hum Hered 19:112–118

    Article  Google Scholar 

  • Hakkinen M, Teo CH (2008) Musa rubinea a new Musa species (Musaceae) from Yunnan, China. Folia Malaysiana 9:23–33

    Google Scholar 

  • Hakkinen M, Teo CH, Othman RY (2007) Genome constitution for Musa beccari (Musaceae) varieties. Acta Phytotax Sin 45:69–74

    Google Scholar 

  • Hawkes JG, Maxted N, Ford-Lloyd BV (2000) The ex situ conservation of plant genetic resources. Kluwer Academic Publishers, Dordrecht

    Book  Google Scholar 

  • Heslop-Harrison JS (2011) Genomics, banana breeding and superdomestication. Acta Hort 897:55–62

    Google Scholar 

  • Heslop-Harrison JS, Schwarzacher T (2007) Domestication, genomics and the future of banana. Ann Bot 100:1073–1084

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Iezzoni AF, Pritts MP (1991) Applications of principal component analysis to horticultural research. Hort Sci 26:334–338

    Google Scholar 

  • IPGRI (1996) Descriptors for banana (Musa spp.). IPGRI, Rome

    Google Scholar 

  • Javed MA, Chai M, Otham RY (2002) Morphological characterization of Malaysian wild banana Musa acuminata. Biotropia 18:21–37

    Google Scholar 

  • Kalendar R, Grob T, Regina M, Suoniemi A, Schuman AH (1999) IRAP and REMAP: two new retrotransposon based DNA fingerprinting techniques. Theor Appl Genet 98:704–711

    Article  CAS  Google Scholar 

  • Kalendar R, Tanskanen I, Immonen S, Nevo E, Schulman AH (2000) Genome evolution of wild barley (Hordeum spontaneum) by Bare-1 retrotransposon dynamics in response to sharp microclimatic divergence. Proc Natl Acad Sci USA 97:6603–6607

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Karamura DA (1998) Numerical taxonomic studies of the East African Highland bananas (Musa AAA-East Africa) in Uganda. Thesis, Department of Agricultural Botany, University of Reading

  • Lapiņa L, Grauda D, Rashal I (2012) Using retrotransposon based molecular markers for analysis of genetic variability in Latvian populations of alfalfa. Acta Biol Univ Daugavp 12:84–87

    Google Scholar 

  • Linnaeus K (1753) The origin of modern botanical nomenclature. Species Plantarum

  • Lombard V, Bari CP, Dubreuil P, Blouet F, Zhang D (1999) Potential use of AFLP markers for the distinction of rapeseed cultivars. In: Wratten N, Salisbury PA (eds) Proceedings of X international rapeseed congress, Canberra, Australia, GCIRC France Home, Paris, pp 100–103

  • Manninen O, Kalendar R, Robinson J, Schuhnan AH (2000) Application of Bare-1 retrotransposon markers to the mapping of a major resistance gene for net blotch in barley. Mol Gen Genet 264:325–334

    Article  CAS  PubMed  Google Scholar 

  • Milach SCK (1999) Disponibilidade de técnicas moleculares para la identificação varietal. In: Pagliano D (ed) Calidad genética y sanitaria: un instrumento para la competitividad de la cadena Agroindustrial. Editora IICA-PROCISUR, Montevideo, pp 39–46

    Google Scholar 

  • Nováková A, Šimáčková K, Bárta J, Čurn V (2009) Potato variety identification by molecular markers based on retrotransposon analyses. Czech J Genet Plant Breed 45:1–10

    Google Scholar 

  • Opara UL, Jacobson D, Al-Saady NA (2010) Analysis of genetic diversity in banana cultivars (Musa cvs.) from the South of Oman using AFLP markers and classification by phylogenetic, hierarchical clustering and principal component analysis. J Zhejiang Univ-Sci B (Biomed Biotechnol) 11:332–341

    Article  CAS  Google Scholar 

  • Papadopoulou K, Ehaliotis C, Journa M, Kastanis P, Karydis I, Zervakis G (2002) Genetic relatedness among dioecious (Ficus carica L.) cultivars by random amplified polymorphic DNA analysis, and evaluation of agronomic and morphological characters. Genetica 114:183–194

    Article  CAS  PubMed  Google Scholar 

  • Priolli RHG, Mendes Junior CT, Arantes NE, Contel EPB (2002) Characterization of Brazilian soybean cultivars using microsatellite markers. Genet Mol Biol 25:185–193

    Article  Google Scholar 

  • Purseglove JW (1972) Tropical crops. Monocotyledons. Longman, London

    Google Scholar 

  • Rocha RB, Muro Abad JI, Pires IE, Araujo EF (2002) Fingerprinting and genetic diversity analysis of Eucalyptus spp. genotypes using RAPD and SSR markers. Scientia Forestalis 62:24–31

    Google Scholar 

  • Rohlf FJ (2000) NTSYS-pc: numerical taxonomy system, version 2.2. Exeter Publishing Ltd, Setauket

  • Santana MF, Araújo EF, Souza JTD, Mizubuti ESG, Queiroz MVD (2012) Development of molecular markers based on retrotransposons for the analysis of genetic variability in Moniliophthora perniciosa. Eur J Plant Pathol 134:497–507. doi:10.1007/s10658-012-0031-4

    Article  CAS  Google Scholar 

  • Saraswathi MS, Uma S, Selvam KP, Ramaraj S, Durai P, Mustaffa MM (2011) Assessing the robustness of IRAP and RAPD marker systems to study intra-group diversity among Cavendish (AAA) clones of banana. J Hortic Sci Biotechnol 86:7–12

    Google Scholar 

  • Silayoi B, Chomchalow N (1995) Cytotaxonomic and morphological studies of Thai bananas. In: Persley GJ, De Langhe E (eds) Banana and plantain breeding strategies. Proceedings of an international workshop held at Cairns, Australia 13–17 October 1986. ACIAR proceedings no. 21. Australian Centre for International Agricultural Research, Canberra, pp 157–160

  • Simmonds NW, Shepherd K (1955) The taxonomy and origins of the cultivated bananas. Bot J Linn Soc 55:302–312. doi:10.1111/j.1095-8339.1955.tb00015.x

    Article  Google Scholar 

  • Singh HP, Uma S (1996) Genetic diversity of banana in India. In: The proceedings of the conference on “Challenges for banana production and utilization in 21st century” held at Trichy, Sept 24–25

  • Smith JSC, Chin ECL, Smith OS, Wall SJ, Senior ML, Mitchell SE, Kresovich S, Ziegle J (1997) An evaluation of the utility of SSR loci as molecular markers in maize (Zea mays L.): comparisons with data from RFLPs and pedigree. Theor Appl Genet 95:163–173

    Article  CAS  Google Scholar 

  • Smýkal P (2006) Development of an efficient retrotransposon-based fingerprinting method for rapid pea variety identification. J Appl Genet 47:221–230

    Article  PubMed  Google Scholar 

  • Staub JE, Meglic V (1993) Molecular genetic markers and their legal relevance for cultivar discrimination: a case study in cucumber. Hort Technol 3:291–300

    Google Scholar 

  • Teo CH, Tan SH, Ho CL, Faridah QZ, Othman RY, Heslop-Harrison JS, Kalender R, Schulman AH (2005) Genome constitution and classification using retrotransposon-based markers in the Orphan crop banana. J Plant Biol 48:96–105

    Article  CAS  Google Scholar 

  • Vicient CM, Schulman AH (2002) Copia-like retrotransposon in the rice genome: few and assorted. Genome Lett 1:35–47

    Article  CAS  Google Scholar 

  • Wright S (1951) The genetic structure of populations. Ann Eugenet 15:323–354

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the infrastructure facilities provided by the Director, Institute of Bioresources and Sustainable Development, Imphal, Manipur, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huidrom Sunitibala Devi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, W.A., Singh, N.S., Handique, P.J. et al. Morpho-taxonomical and molecular assessment of Musa genotypes from north-east India by morphological and inter-retrotransposon amplified polymorphism markers. Plant Syst Evol 301, 563–575 (2015). https://doi.org/10.1007/s00606-014-1094-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00606-014-1094-9

Keywords

Navigation