Skip to main content
Log in

Fluorometric determination of cardiac myoglobin based on energy transfer from a pyrene-labeled aptamer to graphene oxide

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

The authors describe a fluorometric assay for cardiac myoglobin (Mb), a marker for myocardial infarction. An Mb-binding aptamer was labeled with pyrene and adsorbed on the surface of graphene oxide (GO) via noncovalent and reversible binding forces. This causes the fluorescence of pyrene (best measured at excitation/emission wavelengths of 275/376 nm) to be quenched. However, fluorescence is restored on addition of pyrene due to the strong affinity between Mb and aptamer which causes its separation from GO. Fluorescence increases linearly in the 5.6–450 pM Mb concentration range, and the lower detection limit is 3.9 pM (S/N = 3). The assay was applied to the determination of cardiac Mb in spiked serum, and satisfactory results were obtained.

Schematic presentation of the detection of Mb (cardiac myoglobin) by using a fluorometric method based on pyrene-modified anti-Mb aptamer and GO (graphene oxide) through fluorescence quenching and subsequent recovery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Wu AH, Laios I, Green S, Gornet TG, Wong SS, Parmley L, Tonnesen AS, Plaisier B, Orlando R (1994) Immunoassays for serum and urine myoglobin: myoglobin clearance assessed as a risk factor for acute renal failure. Clin Chem 40(5):796–802

    CAS  PubMed  Google Scholar 

  2. Giaretta N, Di GA, Lippert M, Parente A, Di MA (2013) Myoglobin as marker in meat adulteration: a UPLC method for determining the presence of pork meat in raw beef burger. Food Chem 141(3):1814–1820

    Article  CAS  Google Scholar 

  3. Naveena BM, Faustman C, Tatiyaborworntham N, Yin S, Ramanathan R, Mancini RA (2010) Detection of 4-hydroxy-2-nonenal adducts of Turkey and chicken myoglobins using mass spectrometry. Food Chem 122(3):836–840

    Article  CAS  Google Scholar 

  4. Shorie M, Kumar V, Kaur H, Singh K, Tomer VK, Sabherwal P (2018) Plasmonic DNA hotspots made from tungsten disulfide nanosheets and gold nanoparticles for ultrasensitive aptamer-based SERS detection of myoglobin. Microchim Acta 185(3):1–8

    Article  CAS  Google Scholar 

  5. El-Said WA, Fouad DM, El-Safty SA (2016) Ultrasensitive label-free detection of cardiac biomarker myoglobin based on surface-enhanced Raman spectroscopy. Sensors Actuators B Chem 228:401–409

    Article  CAS  Google Scholar 

  6. Gnedenko OV, Mezentsev YV, Molnar AA, Lisitsa AV, Ivanov AS, Archakov AI (2013) Highly sensitive detection of human cardiac myoglobin using a reverse sandwich immunoassay with a gold nanoparticle-enhanced surface plasmon resonance biosensor. Anal Chim Acta 759:105–109

    Article  CAS  Google Scholar 

  7. Yang Z, Wang H, Dong X, Yan H, Lei C, Luo Y (2017) Giant magnetoimpedance based immunoassay for cardiac biomarker myoglobin. Anal Methods 9(24):3636–3642

    Article  CAS  Google Scholar 

  8. Suprun EV, Shilovskaya AL, Lisitsa AV, Bulko TV, Shumyantseva VV, Archakov AI (2011) Electrochemical immunosensor based on metal nanoparticles for cardiac myoglobin detection in human blood plasma. Electroanalysis 23(5):1051–1057

    Article  CAS  Google Scholar 

  9. Singh S, Tuteja SK, Sillu D, Deep A, Suri CR (2016) Gold nanoparticles-reduced graphene oxide based electrochemical immunosensor for the cardiac biomarker myoglobin. Microchim Acta 183(5):1729–1738

    Article  CAS  Google Scholar 

  10. Pur MRK, Hosseini M, Faridbod F, Ganjali MR (2017) Highly sensitive label-free electrochemiluminescence aptasensor for early detection of myoglobin, a biomarker for myocardial infarction. Microchim Acta 184(9):3529–3537

    Article  CAS  Google Scholar 

  11. Yue Q, Song Z (2006) Assay of femtogram level nitrite in human urine using luminol–myoglobin chemiluminescence. Microchem J 84(1–2):10–13

    Article  CAS  Google Scholar 

  12. Abnous K, Danesh NM, Sarreshtehdar Emrani A, Ramezani M, Taghdisi SM (2016) A novel fluorescent aptasensor based on silica nanoparticles, PicoGreen and exonuclease III as a signal amplification method for ultrasensitive detection of myoglobin. Anal Chim Acta 917:71–78

    Article  CAS  Google Scholar 

  13. Zhang X, Kong X, Fan W, Du X (2011) Iminodiacetic acid-functionalized gold nanoparticles for optical sensing of myoglobin via Cu2+ coordination. Langmuir 27(10):6504–6510

    Article  CAS  Google Scholar 

  14. Tuerk C, Gold L (1990) Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249(4968):505–510

    Article  CAS  Google Scholar 

  15. Tombelli S, Minunni M, Mascini M (2005) Analytical applications of aptamers. Biosens Bioelectron 20(12):2424–2434

    Article  CAS  Google Scholar 

  16. Zhang G, Liu Z, Wang L, Guo Y (2016) Electrochemical aptasensor for myoglobin-specific recognition based on porphyrin functionalized graphene-conjugated gold nanocomposites. Sensors 16(11):1803/1–1803/12

    CAS  Google Scholar 

  17. Kumar V, Shorie M, Ganguli AK, Sabherwal P (2015) Graphene-CNT nanohybrid aptasensor for label free detection of cardiac biomarker myoglobin. Biosens Bioelectron 72:56–60

    Article  CAS  Google Scholar 

  18. Nia NG, Azadbakht A (2018) Nanostructured aptamer-based sensing platform for highly sensitive recognition of myoglobin. Microchim Acta 185(7):1–10

    Article  CAS  Google Scholar 

  19. Varghese N, Mogera U, Govindaraj A, Das A, Maiti PK, Sood AK, Rao CNR (2009) Binding of DNA nucleobases and nucleosides with graphene. ChemPhysChem 10(1):206–210

    Article  CAS  Google Scholar 

  20. Swathi RS, Sebastian KL (2009) Long range resonance energy transfer from a dye molecule to graphene has (distance)−4 dependence. J Chem Phys 130(8):086101/1–086101/3

    Article  CAS  Google Scholar 

  21. Zu F, Yan F, Bai Z, Xu J, Wang Y, Huang Y, Zhou X (2017) The quenching of the fluorescence of carbon dots: a review on mechanisms and applications. Microchim Acta 184(7):1899–1914

    Article  CAS  Google Scholar 

  22. Bai Y, Feng F, Zhao L, Chen Z, Wang H, Duan Y (2014) A turn-on fluorescent aptasensor for adenosine detection based on split aptamers and graphene oxide. Analyst 139(8):1843–1846

    Article  CAS  Google Scholar 

  23. Zhu Y, Cai Y, Xu L, Zheng L, Wang L, Qi B, Xu C (2015) Building an aptamer/graphene oxide FRET biosensor for one-step detection of bisphenol a. ACS Appl Mater Interfaces 7(14):7492–7496

    Article  CAS  Google Scholar 

  24. Lu CH, Yang HH, Zhu CL, Chen X, Chen GN (2009) A graphene platform for sensing biomolecules. Angew Chem 48(26):4785–4787

    Article  CAS  Google Scholar 

  25. Yao C, Kraatz HB, Steer RP (2005) Photophysics of pyrene-labelled compounds of biophysical interest. Photochemical & Photobiological Sciences : Official Journal of the European Photochemistry Association and the European Society for Photobiology 4(2):191–199

    Article  CAS  Google Scholar 

  26. Winnik FM (1993) Photophysics of preassociated pyrenes in aqueous polymer solutions and in other organized media. Chem Rev 93(2):587–614

    Article  CAS  Google Scholar 

  27. Kapf A, Albrecht M (2018) Discrimination of proteins through interaction with pyrene-labelled polymer aggregates. J Mater Chem B 6(41):6599–6606

    Article  CAS  Google Scholar 

  28. Wang Q, Liu F, Yang X, Wang K, Wang H, Deng X (2015) Sensitive point-of-care monitoring of cardiac biomarker myoglobin using aptamer and ubiquitous personal glucose meter. Biosens Bioelectron 64:161–164

    Article  CAS  Google Scholar 

  29. Taghdisi SM, Danesh NM, Ramezani M, Emrani AS, Abnous K (2016) A novel electrochemical aptasensor based on Y-shape structure of dual-aptamer-complementary strand conjugate for ultrasensitive detection of myoglobin. Biosens Bioelectron 80:532–537

    Article  CAS  Google Scholar 

  30. Anjum S, Qi W, Gao W, Zhao J, Hanif S, Aziz Ur R, Xu G (2015) Fabrication of biomembrane-like films on carbon electrodes using alkanethiol and diazonium salt and their application for direct electrochemistry of myoglobin. Biosens Bioelectron 65:159–165

    Article  CAS  Google Scholar 

  31. Shumyantseva VV, Bulko TV, Sigolaeva LV, Kuzikov AV, Archakov AI (2016) Electrosynthesis and binding properties of molecularly imprinted poly-o-phenylenediamine for selective recognition and direct electrochemical detection of myoglobin. Biosens Bioelectron 86:330–336

    Article  CAS  Google Scholar 

  32. Wang Q, Yang X, Yang X, Liu F, Wang K (2015) Visual detection of myoglobin via G-quadruplex DNAzyme functionalized gold nanoparticles-based colorimetric biosensor. Sensors Actuators B Chem 212:440–445

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The Authors acknowledge the National Natural Science Foundation of China (No. 21677060 and 51503079), the Public Welfare Research Project of Zhejiang Province (No. LGF18B050004), the Natural Science Foundation of Zhejiang Province (No.s LY16B050007 and LQ19B050002), the Program for Science and Technology of Zhejiang Province (No. 2018C37076) and the Science and Technology Plan Project of Jiaxing City, China (No. 2017AY33034 and 2018AY11002) for funding this research.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yiwen Yang or Lei Li.

Ethics declarations

Human sera sample used in this work was obtained from a healthy volunteer. This study was performed on the consent of the healthy volunteer and approved by the Medical Ethics Committee of Xin’an International Hospital (Jiaxing, China). The authors declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 159 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, D., Zeng, Y., Zhou, G. et al. Fluorometric determination of cardiac myoglobin based on energy transfer from a pyrene-labeled aptamer to graphene oxide. Microchim Acta 186, 287 (2019). https://doi.org/10.1007/s00604-019-3385-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-019-3385-x

Keywords

Navigation