Skip to main content
Log in

A novel fluorescent aptasensor for the highly sensitive and selective detection of cardiac troponin I based on a graphene oxide platform

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Acute myocardial infarction (AMI) is one of the leading risks to global health. Thus, the rapid, accurate early diagnosis of AMI is highly critical. Human cardiac troponin I (cTnI) has been regarded as a golden biomarker for AMI due to its excellent selectivity. In this work, a novel fluorescent aptasensor based on a graphene oxide (GO) platform was developed for the highly sensitive and selective detection of cTnI. GO binds to the fluorescent anti-cTnI aptamer and quenches its fluorescence. In the presence of cTnI, the fluorescent anti-cTnI aptamer leaves the surface of GO, combines with cTnI because of the powerful affinity of the fluorescent anti-cTnI aptamer and cTnI, and then restores the fluorescence of the fluorescent anti-cTnI aptamer. Fluorescence-enhanced detection is highly sensitive and selective to cTnI. The method exhibited good analytical performance with a reasonable dynamic linearity at the concentration range of 0.10–6.0 ng/mL and a low detection limit of 0.07 ng/mL (S/N = 3). The fluorescent aptasensor also exhibited high selectivity toward cTnI compared with other interference proteins. The proposed method may be a potentially useful tool for cTnI determination in human serum.

A novel fluorescent aptasensor for the highly sensitive and selective detection of cardiac troponin I based on a graphene oxide platform.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Riegel B, Hanlon AL, McKinley S, Moser DK, Meischke H, Doering LV, et al. Differences in mortality in acute coronary syndrome symptom clusters. Am Heart J. 2010;159(3):392–8.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Periyakaruppan A, Gandhiraman RP, Meyyappan M, Koehne JE. Label-free detection of cardiac troponin-I using carbon nanofiber based nanoelectrode arrays. Anal Chem. 2013;85(8):3858–63.

    Article  CAS  PubMed  Google Scholar 

  3. Li F, Yu Y, Cui H, Yang D, Bian Z. Label-free electrochemiluminescence immunosensor for cardiac troponin I using luminol functionalized gold nanoparticles as a sensing platform. Analyst. 2013;138(6):1844–50.

    Article  CAS  PubMed  Google Scholar 

  4. Boriani G, Biffi M, Cervi V, Bronzetti G, Magagnoli G, Zannoli R, et al. Evaluation of myocardial injury following repeated internal atrial shocks by monitoring serum cardiac troponin I levels. Chest. 2000;118(2):342–7.

    Article  CAS  PubMed  Google Scholar 

  5. Cummins B, Auckland ML, Cummins P. Cardiac-specific troponin-I radioimmunoassay in the diagnosis of acute myocardial infarction. Am Heart J. 1987;113(6):1333–44.

    Article  CAS  PubMed  Google Scholar 

  6. Wang J, Ibáñez A, And MPC, Escarpa† A. Electrochemical enzyme immunoassays on microchip platforms. Anal Chem. 2001;73(21):5323–7.

    Article  CAS  PubMed  Google Scholar 

  7. Han X, Li S, Peng Z, Othman AM, Leblanc R. Recent development of cardiac troponin I detection. ACS Sensors. 2016;1(2):106–14.

    Article  CAS  Google Scholar 

  8. Wu W-Y, Bian Z-P, Wang W, Wang W, Zhu J-J. PDMS gold nanoparticle composite film-based silver enhanced colorimetric detection of cardiac troponin I. Sens Actuators B Chem. 2010;147(1):298–303.

    Article  CAS  Google Scholar 

  9. Dorraj GS, Rassaee MJ, Latifi AM, Pishgoo B, Tavallaei M. Selection of DNA aptamers against human cardiac troponin I for colorimetric sensor based dot blot application. J Biotechnol. 2015;208:80–6.

    Article  CAS  PubMed  Google Scholar 

  10. Lee S, Kang SH. Quenching effect on gold nano-patterned cardiac troponin I chip by total internal reflection fluorescence microscopy. Talanta. 2013;104:32–8.

    Article  CAS  PubMed  Google Scholar 

  11. Seo SM, Kim SW, Park JN, Cho JH, Kim HS, Paek SH. A fluorescent immunosensor for high-sensitivity cardiac troponin I using a spatially-controlled polymeric, nano-scale tracer to prevent quenching. Biosens Bioelectron. 2016;83:19–26.

    Article  CAS  PubMed  Google Scholar 

  12. Bruls DM, Evers TH, Kahlman JA, van Lankvelt PJ, Ovsyanko M, Pelssers EG, et al. Rapid integrated biosensor for multiplexed immunoassays based on actuated magnetic nanoparticles. Lab Chip. 2009;9(24):3504–10.

    Article  CAS  PubMed  Google Scholar 

  13. Zhou F, Lu M, Wang W, Bian ZP, Zhang JR, Zhu JJ. Electrochemical immunosensor for simultaneous detection of dual cardiac markers based on a poly(dimethylsiloxane)-gold nanoparticles composite microfluidic chip: a proof of principle. Clin Chem. 2010;56(11):1701–7.

    Article  CAS  PubMed  Google Scholar 

  14. Singal S, Srivastava AK, Biradar AM, Mulchandani A, Rajesh. Pt nanoparticles-chemical vapor deposited graphene composite based immunosensor for the detection of human cardiac troponin I. Sens Actuators B Chem. 2014;205:363–70.

    Article  CAS  Google Scholar 

  15. Singal S, Srivastava AK, Gahtori B, Rajesh. Immunoassay for troponin I using a glassy carbon electrode modified with a hybrid film consisting of graphene and multiwalled carbon nanotubes and decorated with platinum nanoparticles. Microchim Acta. 2016;183(4):1375–84.

    Article  CAS  Google Scholar 

  16. Xu Z, Dong Y, Li J, Yuan R. A ferrocene-switched electrochemiluminescence “off-on” strategy for the sensitive detection of cardiac troponin I based on target transduction and a DNA walking machine. Chem Commun. 2015;51(76):14369–72.

    Article  CAS  Google Scholar 

  17. Kwon YC, Kim MG, Kim EM, Shin YB, Lee SK, Lee SD, et al. Development of a surface plasmon resonance-based immunosensor for the rapid detection of cardiac troponin I. Biotechnol Lett. 2011;33(5):921–7.

    Article  CAS  PubMed  Google Scholar 

  18. Wu Q, Sun Y, Zhang D, Li S, Zhang Y, Ma P, et al. Ultrasensitive magnetic field-assisted surface plasmon resonance immunoassay for human cardiac troponin I. Biosens Bioelectron. 2017;96:288–93.

    Article  CAS  PubMed  Google Scholar 

  19. Emrani AS, Danesh NM, Ramezani M, Taghdisi SM, Abnous K. A novel fluorescent aptasensor based on hairpin structure of complementary strand of aptamer and nanoparticles as a signal amplification approach for ultrasensitive detection of cocaine. Biosens Bioelectron. 2016;79:288–93.

    Article  CAS  PubMed  Google Scholar 

  20. Nguyen VT, Kwon YS, Gu MB. Aptamer-based environmental biosensors for small molecule contaminants. Curr Opin Biotechnol. 2017;45:15–23.

    Article  CAS  PubMed  Google Scholar 

  21. Citartan M, Gopinath SCB, Tominaga J, Tan SC, Tang TH. Assays for aptamer-based platforms. Biosens Bioelectron. 2012;34(1):1–1.

    Article  CAS  PubMed  Google Scholar 

  22. Liu J, Cao Z, Lu Y. Functional nucleic acid sensors. Chem Rev. 2009;109(5):1948–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Fathizadeh M, Xu WL, Zhou F, Yoon Y, Yu M. Graphene oxide: a novel 2-dimensional material in membrane separation for water purification. Adv Mater Interfaces. 2017;4(5):1600918(1–16).

    Article  CAS  Google Scholar 

  24. Lu C, hyphen H, Yang H, hyphen H, Zhu C, hyphen L, et al. A graphene platform for sensing biomolecules. Angew Chem. 2009;121(26):4879–81.

    Article  Google Scholar 

  25. Li M, Zhou X, Ding W, Guo S, Wu N. Fluorescent aptamer-functionalized graphene oxide biosensor for label-free detection of mercury(II). Biosens Bioelectron. 2013;41:889–93.

    Article  CAS  PubMed  Google Scholar 

  26. Qian Z, Shan XY, Chai LJ, Chen JR, Feng H. Dual-colored graphene quantum dots-labeled nanoprobes/graphene oxide: functional carbon materials for respective and simultaneous detection of DNA and thrombin. Nanotechnology. 2014;25(41):415501–10.

    Article  CAS  Google Scholar 

  27. Qian ZS, Shan XY, Chai LJ, Ma JJ, Chen JR, Feng H. DNA nanosensor based on biocompatible graphene quantum dots and carbon nanotubes. Biosens Bioelectron. 2014;60:64–70.

    Article  CAS  PubMed  Google Scholar 

  28. Qian Z, Shan X, Chai L, Chen J, Feng H. Simultaneous detection of multiple DNA targets by integrating dual-color graphene quantum dot nanoprobes and carbon nanotubes. Chem Eur J. 2014;20(49):16065–9.

    Article  CAS  PubMed  Google Scholar 

  29. Qian ZS, Shan XY, Chai LJ, Ma JJ, Chen JR, Feng H. A universal fluorescence sensing strategy based on biocompatible graphene quantum dots and graphene oxide for the detection of DNA. Nano. 2014;6(11):5671–4.

    CAS  Google Scholar 

  30. Wang Q, Liu F, Yang X, Wang K, Wang H, Deng X. Sensitive point-of-care monitoring of cardiac biomarker myoglobin using aptamer and ubiquitous personal glucose meter. Biosens Bioelectron. 2015;64:161–4.

    Article  CAS  PubMed  Google Scholar 

  31. Liang J, Wei R, He S, Liu Y, Guo L, Li L. A highly sensitive and selective aptasensor based on graphene oxide fluorescence resonance energy transfer for the rapid determination of oncoprotein PDGF-BB. Analyst. 2013;138(6):1726–32.

    Article  CAS  PubMed  Google Scholar 

  32. Stobiecka M, Dworakowska B, Jakiela S, Lukasiak A, Chalupa A, Zembrzycki K. Sensing of survivin mRNA in malignant astrocytes using graphene oxide nanocarrier-supported oligonucleotide molecular beacons. Sens Actuators B Chem. 2016;235:136–45.

    Article  CAS  Google Scholar 

  33. Ahammad AJS, Choi YH, Koh K, Kim JH, Lee JJ, Lee M. Electrochemical detection of cardiac biomarker troponin I at gold nanoparticle-modified ITO electrode by using open circuit potential. Int J Electrochem Sci. 2011;6(6):1906–16.

    CAS  Google Scholar 

  34. Bhalla V, Carrara S, Sharma P, Nangia Y, Raman Suri C. Gold nanoparticles mediated label-free capacitance detection of cardiac troponin I. Sens Actuators B Chem. 2012;161(1):761–8.

    Article  CAS  Google Scholar 

  35. Byzova NA, Zherdev AV, Vengerov YY, Starovoitova ТA, Dzantiev BB. A triple immunochromatographic test for simultaneous determination of cardiac troponin I, fatty acid binding protein, and C-reactive protein biomarkers. Microchim Acta. 2016;184(2):463–71.

    Article  CAS  Google Scholar 

  36. Jo H, Her J, Lee H, Shim YB, Ban C. Highly sensitive amperometric detection of cardiac troponin I using sandwich aptamers and screen-printed carbon electrodes. Talanta. 2017;165:442–8.

    Article  CAS  PubMed  Google Scholar 

  37. Guo Z, Gu C, Fan X, Bian Z, Wu H, Yang D, et al. Fabrication of anti-human cardiac troponin I immunogold nanorods for sensing acute myocardial damage. Nanoscale Res Lett. 2009;4(12):1428–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Liu J, Zhang L, Wang Y, Zheng Y, Sun S. An improved portable biosensing system based on enzymatic chemiluminescence and magnetic immunoassay for biological compound detection. Measurement. 2014;47:200–6.

    Article  Google Scholar 

  39. Masson JF, Obando L, Beaudoin S, Booksh K. Sensitive and real-time fiber-optic-based surface plasmon resonance sensors for myoglobin and cardiac troponin I. Talanta. 2004;62(5):865–70.

    Article  CAS  PubMed  Google Scholar 

  40. Song SY, Han YD, Kim K, Yang SS, Yoon HC. A fluoro-microbead guiding chip for simple and quantifiable immunoassay of cardiac troponin I (cTnI). Biosens Bioelectron. 2011;26(9):3818–24.

    Article  CAS  PubMed  Google Scholar 

  41. Torabi F, Mobini Far HR, Danielsson B, Khayyami M. Development of a plasma panel test for detection of human myocardial proteins by capillary immunoassay. Biosens Bioelectron. 2007;22(7):1218–23.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (Nos. 21677060 and 51503079), the Zhejiang Provincial Natural Science Foundation of China under Grant No. LY16B050007, the Public Welfare Research Project of Zhejiang Province (No. LGF18B050004), and the Science and Technology Plan Project of Jiaxing City, China (No. 2017AY33034).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yiwen Yang or Lei Li.

Ethics declarations

Human serum sample used in this study was collected from a healthy volunteer. This work was performed with the written informed consent of the healthy volunteer. The studies were approved by the Medical Ethics Committee of Xin’an International Hospital (Jiaxing, China) and performed in accordance with the ethical standards.

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

ESM 1

(PDF 155 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, D., Lu, X., Yang, Y. et al. A novel fluorescent aptasensor for the highly sensitive and selective detection of cardiac troponin I based on a graphene oxide platform. Anal Bioanal Chem 410, 4285–4291 (2018). https://doi.org/10.1007/s00216-018-1076-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-018-1076-9

Keywords

Navigation