Skip to main content
Log in

Highly sensitive enzymatic determination of urea based on the pH-dependence of the fluorescence of graphene quantum dots

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

We report on a nanoparticle-based fluorescent sensing scheme for urea. It is based on the finding that graphene quantum dots (GQDs) display pH-sensitive green fluorescence if photoexcited at 460 nm. Fluorescence is gradually quenched due to an increase in the local pH value as a result of the hydrolysis of urea as catalyzed by urease. The effect was used to quantify urea in the 0.1–100 mM concentration range, with a limit of detection of 0.01 mM. The method was successfully applied to the determination of urea in human serum samples. The method is simple, effective, and therefore holds promise as a platform for sensing urea in blood.

The pH-sensitive fluorescence of graphene quantum dots was used in a detection scheme for urea that exploits the increase in pH as a result of urease-catalyzed hydrolysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Prats-Alfonso E, Abad L, Casañ-Pastor N, Gonzalo-Ruiz J, Baldrich E (2013) Iridium oxide pH sensor for biomedical applications. Case urea-urease in real urine samples. Biosens Bioelectron 39:163–169

    Article  CAS  Google Scholar 

  2. Ali SMU, Ibupotoa ZH, Salmanb S, Nura O, Willandera M, Danielsson B (2011) Selective determination of urea using urease immobilized on ZnO nanowires. Sensor Actuators B Chem 160:637–643

    Article  CAS  Google Scholar 

  3. Soldatkin OO, Kucherenko IS, Marchenko SV, Ozansoy Kasap B, Akata B, Soldatkin AP, Dzyadevych SV (2014) Application of enzyme/zeolite sensor for urea analysis in serum. Mater Sci Eng C 42:155–160

    Article  CAS  Google Scholar 

  4. Kuralay F, Özyörük H, Yıldız A (2006) Amperometric enzyme electrode for urea determination using immobilized urease in poly(vinylferrocenium) film. Sensors Actuators B 114:500–506

    Article  CAS  Google Scholar 

  5. Miyauchi T, Miyachi Y, Takahashi M, Ishikawa N, Mori H (2010) Determination of urea in serum based on the combination of an enzymatic reaction with immobilized urease and Ion chromatographic analysis. ANAL SCI 26:847–851

    Article  CAS  Google Scholar 

  6. Srivastava RK, Srivastava S, Narayanan TN, Mahlotra BD, Vajtai R, Ajayan PM, Srivastava A (2012) Functionalized multilayered graphene platform for urea sensor. ASC NANO 6:168–175

    Article  CAS  Google Scholar 

  7. Siqueira JR Jr, Molinnus D, Beging S, Schöning MJ (2014) Incorporating a hybrid urease-carbon nanotubes sensitive nanofilm on capacitive field-effect sensors for urea detection. Anal Chem 86:5370–5375

    Article  CAS  Google Scholar 

  8. Rajesh PN, Mishra SK, Laskar MJ, Srivastava AK (2014) Microstructural and potential dependence studies of urease-immobilized gold nanoparticles-polypyrrole composite film for urea detection. Appl Biochem Biotechnol 172:1055–1069

    Article  CAS  Google Scholar 

  9. Ali A, Ansari AA, Kaushik A, Solanki PR, Barik A, Pandey MK, Malhotra BD (2009) Nanostructured zinc oxide film for urea sensor. Mat Lett 63:2473–2475

    Article  CAS  Google Scholar 

  10. Shi H, Chen X, Li L, Tan L, Ren X, Rena J, Meng X (2014) One-pot and one-step synthesis of bioactive urease/ZnFe2O4 nanocomposites and their application in detection of urea. Dalton Trans 43:9016–9021

    Article  CAS  Google Scholar 

  11. Srivastava S, Solanki PR, Kaushik A, Ali MA, Srivastavab A, Malhotra BD (2011) A self assembled monolayer based microfluidic sensor for urea detection. Nanoscale 3:2971–2977

    Article  CAS  Google Scholar 

  12. Shalini J, Sankaran KJ, Lee CY, Tai NH, Lin IN (2014) An amperometric urea bisosensor based on covalent immobilization of urease on N2 in corporated diamond nanowire electrode. Biosens Bioelectron 56:64–70

    Article  CAS  Google Scholar 

  13. Saiapina OY, Pyeshkova VM, Soldatkin OO, Melnik VG, Kur BA, Walcarius A, Dzyadevych SV, Jaffrezic-Renault N (2011) Conductometric enzyme biosensors based on natural zeolite clinoptilolite for urea determination. Mater Sci Eng C 31:1490–1497

    Article  CAS  Google Scholar 

  14. Ruedas-Rama MJ, Hall EAH (2010) Analytical nanosphere sensors using quantum dot-enzyme conjugates for urea and creatinine. Anal Chem 82:9043–9049

    Article  CAS  Google Scholar 

  15. Nikoleli GP, Nikolelis DP, Methenitis C (2010) Construction of a simple optical sensor based on air stable lipid film with incorporated urease for the rapid detection of urea in milk. Anal Chim Acta 675:58–63

    Article  CAS  Google Scholar 

  16. Pandey PC, Singh G (2001) Tetraphenylborate doped polyaniline based novel pH sensor and solid-state urea biosensor. Talanta 55:773–782

    Article  CAS  Google Scholar 

  17. Marchenko SV, Kucherenko IS, Hereshko AN, Panasiuk IV, Soldatkin OO, El’skaya AV, Soldatkin AP (2015) Application of potentiometric biosensor based on recombinant urease for urea determination in blood serum and hemodialyzate. Sensors Actuators B 207:981–986

    Article  CAS  Google Scholar 

  18. Tiwari A, Aryal S, Pilla S, Gong S (2009) An amperometric urea biosensor based on covalently immobilized urease on an electrode made of hyperbranched polyester functionalized gold nanoparticles. Talanta 78:1401–1407

    Article  CAS  Google Scholar 

  19. Rajesh, Bisht V, Takashima W, Kaneto K (2005) An amperometric urea biosensor based on covalent immobilization of urease onto an electrochemically prepared copolymer poly (N-3-aminopropyl pyrrole-co-pyrrole) film. Biomaterials 26:3683–3690

    Article  CAS  Google Scholar 

  20. Suye S, Miura J, Ohue M (1999) A fluorometric determination of urea with urease. Anal Lett 32:1543–1551

    Article  CAS  Google Scholar 

  21. Huang CP, Li YK, Chen TM (2007) A highly sensitive system for urea detection by using CdSe/ZnS core-shell quantum dots. Biosens Bioelectron 22:1835–1838

    Article  CAS  Google Scholar 

  22. Li LL, Ji J, Fei R, Wang CZ, Lu Q, Zhang JR, Jiang LP, Zhu JJ (2012) A facile microwave avenue to electrochemiluminescent two-color graphene quantum dots. Adv Funct Mater 22:2971–2979

    Article  CAS  Google Scholar 

  23. Li LL, Wu GH, Yang GH, Peng J, Zhao JW, Zhu JJ (2013) Focusing on luminescent graphene quantum dots: current status and future perspectives. Nanoscale 5:4015–4039

    Article  CAS  Google Scholar 

  24. Peng J, Gao W, Gupta BK, Liu Z, Romero-Aburto R, Ge LH, Song L, Alemany LB, Zhan XB, Gao GH, Vithayathil SA, Kaipparettu BA, Marti AA, Hayashi T, Zhu JJ, Ajayan PM (2012) Graphene quantum dots derived from carbon fibers. Nano Lett 12:844–849

    Article  CAS  Google Scholar 

  25. Lu Z, Chen X, Wang Y, Zheng X, Li CM (2015) Aptamer based fluorescence recovery assay for aflatoxin B1 using a quencher system composed of quantum dots and graphene oxide. Microchim Acta 182:571–578

    Article  CAS  Google Scholar 

  26. Li L, Li L, Wang C, Liu K, Zhu R, Qiang H, Lin Y (2015) Synthesis of nitrogen-doped and amino acid-functionalized graphene quantum dots from glycine, and their application to the fluorometric determination of ferric ion. Microchim Acta 182:763–770

    Article  CAS  Google Scholar 

  27. Duan N, Wu S, Dai S, Miao T, Chen J, Wang Z (2014) Simultaneous detection of pathogenic bacteria using an aptamer based biosensor and dual fluorescence resonance energy transfer from quantum dots to carbon nanoparticles. DOI 10.1007/s00604-014-1406-3

  28. Shen PF, Xia YS (2014) Synthesis-modification integration: one-step fabrication of boronic acid functionalized carbon dots for fluorescent blood sugar sensing. Anal Chem 86:5323–5329

    Article  CAS  Google Scholar 

  29. Shao TL, Wang GD, An XT, Zhuo SJ, Xia YS, Zhu CQ (2014) A reformative oxidation strategy using high concentration nitric acid for enhancing the emission performance of graphene quantum dots. RSC Adv 4:47977–47981

    Article  CAS  Google Scholar 

  30. Koncki R, Mohr GJ, Wolfbeis OS (1995) Enzyme biosensor for urea based on a novel pH bulk optode membrane. Biosens Bioelectron 10(8):653–659

    Article  CAS  Google Scholar 

  31. Dong YQ, Lin JP, Chen YM, Fu FF, Chi YW, Chen GN (2014) Graphene quantum dots, graphene oxide, carbon quantum dots and graphite nanocrystals in coals. Nanoscale 6:7410–7415

    Article  CAS  Google Scholar 

  32. Ye RQ, Xiang CS, Lin J, Peng ZW, Huang KW, Yan Z, Cook NP, Samuel ELG, Hwang CC, Ruan GD, Ceriotti G, Raji AO, Martí AA, Tour JM (2013) Coal as an abundant source of graphene quantum dots. Nat Commun 4:2943–2948

    Google Scholar 

  33. Shen JH, Zhu YH, Yang XL, Li CZ (2012) Graphene quantum dots: emergent nanolights for bioimaging, sensors, catalysis and photovoltaic devices. Chem Commun 48:3686–3699

    Article  CAS  Google Scholar 

  34. Baker SN, Baker GA (2010) Luminescent carbon nanodots: emergent nanolights. Angew Chem Int Ed 49:6726–6744

    Article  CAS  Google Scholar 

  35. Li HT, Kang ZH, Liu Y, Lee ST (2012) Carbon nanodots: synthesis, properties and applications. J Mater Chem 22:24230–24253

    Article  CAS  Google Scholar 

  36. Bourlinos AB, Stassinopoulos A, Anglos D, Zboril R, Karakassides M, Giannelis EP (2008) Surface functionalized carbogenic quantum dots. Small 4:455–458

    Article  CAS  Google Scholar 

  37. Liu S, Tian JQ, Wang L, Luo YL, Zhai JF, Sun XP (2011) Preparation of photoluminescent carbon nitride dots from CCl4 and 1, 2-ethylenediamine: a heat-treatment-based strategy. J Mater Chem 21(32):11726–11729

    Article  CAS  Google Scholar 

  38. Pan D, Zhang J, Li Z, Wu M (2010) Hydrothermal route for cutting graphene sheets into blue-luminescent graphene quantum dots. Adv Mater 22:734–738

    Article  Google Scholar 

  39. Shen J, Zhu Y, Chen C, Yang X, Li C (2011) Facile preparation and upconversion luminescence of graphene quantum dots. Chem Commun 47:2580–2582

    Article  CAS  Google Scholar 

  40. Kochmann S, Hirsch T, Wolfbeis OS (2012) The pH dependence of the total fluorescence of graphite oxide. J Fluoresc 22:849–855

    Article  CAS  Google Scholar 

  41. Tian DH, Qian ZS, Xia YS, Zhu CQ (2012) Gold nanocluster-based fluorescent probes for near-infrared and turn-on sensing of glutathione in living cells. Langmuir 28:3945–3951

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (no. 21375003, 21175003, C. Z.; 21303003, S. Z.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changqing Zhu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 329 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shao, T., Zhang, P., Tang, L. et al. Highly sensitive enzymatic determination of urea based on the pH-dependence of the fluorescence of graphene quantum dots. Microchim Acta 182, 1431–1437 (2015). https://doi.org/10.1007/s00604-015-1469-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-015-1469-9

Keywords

Navigation