Skip to main content
Log in

Highly sensitive label-free electrochemiluminescence aptasensor for early detection of myoglobin, a biomarker for myocardial infarction

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

The authors describe an ultrasensitive electrochemiluminescence (ECL) based aptasensor for myoglobin, a biomarker for the early diagnosis of heart attack (myocardial infarction). A nanocomposite was prepared from reduced graphene oxide, ruthenium(II)-tris(2,2- bipyridyl), samarium oxide and chitosan and placed on the surface of a ccreen-printed carbon electrode (SPCE). The aptamer was immobilized via electrostatic interaction between the negatively charged aptamer and the positively charged nanocomposite which represents a remarkable immobilization platform. In the absence of myoglobin, the ECL signal of the ruthenium complex (generated at 1.2 V and peaking at 530 nm is weak. In the presence of myoglobin, a remarkable increase in ECL is observed due to the formation of the aptamer-myoglobin complex and the corresponding release of the labeled aptamercomplex from the surface. The response of the sensor is linear in the 0.05 to 25 nM myoglobin concentration range, with a 12 pM detection limit (at an S/N ratio of 3). The assay was successfully applied to the determination of myoglobin in spiked human serum and human urine samples where it gave recoveries that ranged from 96 to 105%, and from 95 to 103.7%, respectively."

An ultrasensitive electrochemiluminescence (ECL) aptasensor based on nanocomposite of reduced graphene oxide, ruthenium(II)-tris(2,2- bipyridyl), samarium oxide and chitosan was constructed for detection of myoglobin biomarker.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Lee HY, Choi JS, Guruprasath P, Lee BH, Cho YW (2015) An electrochemical biosensor based on a myoglobin-specific binding peptide for early diagnosis of acute myocardial infarction. Anal Sci 31:699–704

    Article  CAS  Google Scholar 

  2. Wang Q, Liu W, Xing Y, Yang X, Wang K, Jiang R, Wang P, Zhao Q (2014) Screening of DNA aptamers against myoglobin using a positive and negative selection units integrated microfluidic chip and its biosensing application. Anal Chem 86:6572–6579

    Article  CAS  Google Scholar 

  3. Wang Q, Liu L, Yang X, Wang K, Chen N, Zhou C, Luo B, Du S (2015) Evaluation of medicine effects on the interaction of myoglobin and its aptamer or antibody using atomic force microscopy. Anal Chem 87:2242–2248

    Article  CAS  Google Scholar 

  4. Kumar V, Shorie M, Ganguli AK, Sabherwal P (2015) Graphene-CNT nanohybrid aptasensor for label free detection of cardiac biomarker myoglobin. Biosens Bioelectron 72:56–60

    Article  CAS  Google Scholar 

  5. El-Said WA, Fouad DM, El-Safty SA (2016) Ultrasensitive label-free detection of cardiac biomarker myoglobin based on surface-enhanced Raman spectroscopy. Sensors Actuators B Chem 228:401–409

    Article  CAS  Google Scholar 

  6. Mandal SS, Narayan KK, Bhattacharyya AJ (2013) Employing denaturation for rapid electrochemical detection of myoglobin using TiO 2 nanotubes. J Mater Chem B 1:3051–3056

    Article  CAS  Google Scholar 

  7. Singh S, Tuteja SK, Sillu D, Deep A, Suri CR (2016) Gold nanoparticles-reduced graphene oxide based electrochemical immunosensor for the cardiac biomarker myoglobin. Microchim Acta 183:1729–1738

    Article  CAS  Google Scholar 

  8. Osman B, Uzun L, Beşirli N, Denizli A (2013) Microcontact imprinted surface plasmon resonance sensor for myoglobin detection. Mater Sci Eng C 33:3609–3614

    Article  CAS  Google Scholar 

  9. Darain F, Yager P, Gan KL, Chuan Tjin S (2009) On-chip detection of myoglobin based on fluorescence. Biosens Bioelectron 24:1744–1750

    Article  CAS  Google Scholar 

  10. Wang G, Jia L, Zhao Q, Tao X, Jia W, Cui H, Wang H (2011) Electrochemiluminescence of CdTe/CdS quantum dots immobilized on Nafion/HAp hybrid film and its application to highly selective detection of myoglobin. Chinese J Sens Actuators 24:1242–1247

    CAS  Google Scholar 

  11. Miao W (2008) Electrogenerated chemiluminescence and its biorelated applications. Chem Rev 108:2506–2553

    Article  CAS  Google Scholar 

  12. Wang XY, Gao A, Lu CC, He XW, Yin XB (2013) An electrochemiluminescence aptasensor for thrombin using graphene oxide to immobilize the aptamer and the intercalated Ru (phen) 32+ probe. Biosens Bioelectron 48:120–125

    Article  CAS  Google Scholar 

  13. Hosseini M, Moghaddam MR, Faridbod F, Norouzi P, Karimi Pur MR, Ganjali MR (2015) A novel solid-state electrochemiluminescence sensor based on a Ru (bpy) 3 2+/nano Sm 2 O 3 modified carbon paste electrode for the determination of l-proline. RSC Adv 5:64669–64674

    Article  CAS  Google Scholar 

  14. Hosseini M, Karimi Pur MR, Norouzi P, Moghaddam MR, Faridbod F, Ganjali MR, Shamsi J (2015) Enhanced solid-state electrochemiluminescence of Ru (bpy) 3 2+ with nano-CeO 2 modified carbon paste electrode and its application in tramadol determination. Anal Methods 7:1936–1942

    Article  CAS  Google Scholar 

  15. Tang X, Zhao D, He J, Li F, Peng J, Zhang M (2013) Quenching of the Electrochemiluminescence of Tris (2, 2′-bipyridine) ruthenium (II)/tri-n-propylamine by pristine carbon nanotube and its application to quantitative detection of DNA. Anal Chem 85:1711–1718

    Article  CAS  Google Scholar 

  16. Zhang J, Chen P, Wu X, Chen J, Xu L, Chen G, Fu F (2011) A signal-on electrochemiluminescence aptamer biosensor for the detection of ultratrace thrombin based on junction-probe. Biosens Bioelectron 26:2645–2650

    Article  CAS  Google Scholar 

  17. Xiong C, Wang H, Yuan Y, Chai Y, Yuan R (2015) A novel solid-state Ru (bpy) 3 2+ electrochemiluminescence immunosensor based on poly (ethylenimine) and polyamidoamine dendrimers as co-reactants. Talanta 131:192–197

    Article  CAS  Google Scholar 

  18. Tombelli S, Minunni M, Mascini M (2005) Analytical applications of aptamers. Biosens Bioelectron 20:2424–2434

    Article  CAS  Google Scholar 

  19. Tao Y, Zhang D, Zhang C (2011) Electrochemical and Electrochemiluminescent Aptasensors. Chinese J Anal Chem 39:972–977

    Article  Google Scholar 

  20. Deng S, Ju H (2013) Electrogenerated chemiluminescence of nanomaterials for bioanalysis. Analyst 138:43–61

    Article  CAS  Google Scholar 

  21. Hosseini M, Mirzanasiri N, Rezapour M, Sheikhha MH, Faridbod F, Norouzi P, Ganjali MR (2015) Sensitive determination of carbidopa through the electrochemiluminescence of luminol at graphene-modified electrodes. Luminescence 30:376–381

    Article  CAS  Google Scholar 

  22. Borghei YS, Hosseini M, Dadmehr M, Hosseinkhani S, Ganjali MR, Sheikhnejad R (2106) Visual detection of cancer cells by colorimetric aptasensor based on aggregation of gold nanoparticle induced by DNA hybridiztion. Anal Chim Acta 904:92–97

  23. Karimi Pur MR, Hosseini M, Faridbod F, Dezfuli AS, Ganjali MR (2016) A novel solid-state electrochemiluminescence sensor for detection of cytochrome c based on ceria nanoparticles decorated with reduced graphene oxide nanocomposite. Anal Bioanal Chem 408:7193–7202

    Article  Google Scholar 

  24. Rosengren A, Johansson B (1982) Valence instability of the samarium metal surface. Phys Rev B 26:3068

    Article  CAS  Google Scholar 

  25. Taleat Z, Khoshroo A, Mazloum-Ardakani M (2014) Screen-printed electrodes for biosensing: a review (2008–2013). Microchim Acta 10:865–891

    Article  Google Scholar 

  26. Marcano DC, Kosynkin DV, Berlin JM, Sinitskii A, Sun Z, Slesarev A, Alemany LB, Lu W, Tour JM (2010) Improved synthesis of graphene oxide. ACS Nano 4:4806–4814

    Article  CAS  Google Scholar 

  27. Dezfuli AS, Ganjali MR, Norouzi P, Faridbod F (2015) Facile sonochemical synthesis and electrochemical investigation of ceria/graphene nanocomposites. J Mater Chem B 3:2362–2370

    Article  CAS  Google Scholar 

  28. Faridbod F, Hosseini M, Ganjali MR, Norouzi P (2013) Potentiometric sensor for determination of clomiphene. Int J Electrochem Sci 8:1976–1985

    CAS  Google Scholar 

  29. Cui G, Yoo JH, Lee JS, Yoo J, Hee Uhm J, Sig Cha G, Nam H (2001) Effect of pre-treatment on the surface and electrochemical properties of screen-printed carbon paste electrodes. Analyst 126:1399–1403

    Article  CAS  Google Scholar 

  30. Sassolas A, Blum LJ, Leca-Bouvier BD (2009) Polymeric luminol on pre-treated screen-printed electrodes for the design of performant reagentless (bio) sensors. Sensors Actuators B Chem 139:214–221

    Article  CAS  Google Scholar 

  31. Michel CR, Martínez-Preciado AH, Parra R, Aldao CM, Ponce MA (2014) Novel CO2 and CO gas sensor based on nanostructured Sm2O3 hollow microspheres. Sensors Actuators B Chem 202:1220–1228

    Article  CAS  Google Scholar 

  32. Sadhukhan S, Kumar Ghosh T, Rana D, Roy I, Bhattacharyya A, Sarkar G, Chakraborty M, Chattopadhyay D (2016) Studies on synthesis of reduced graphene oxide (RGO) via green route and its electrical property. Mater Res Bull 79:41–51

    Article  CAS  Google Scholar 

  33. Zhu Y, Li G, Zhang S, Song J, Mao C, Niu H, Jin B, Tian Y (2011) Synthesis and electrochemiluminescence of the CeO2/TiO2 composite. Electrochim Acta 56:7550–7554

    Article  CAS  Google Scholar 

  34. Xia B, Chu M, Wang S, Wang W, Yang S, Liu C, Luo S (2015) Graphene oxide amplified electrochemiluminescence of graphitic carbon nitride and its application in ultrasensitive sensing for Cu2+. Anal Chim Acta 891:113–119

    Article  CAS  Google Scholar 

  35. Gao Z, Yang W, Wang J, Yan H, Yao Y, Ma J, Wang B, Zhang M, Liu L (2013) Electrochemical synthesis of layer-by-layer reduced graphene oxide sheets/polyaniline nanofibers composite and its electrochemical performance. Electrochim Acta 91:185–194

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the research Council of University of Tehran for financial support of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Morteza Hosseini.

Ethics declarations

The author(s) declare that they have no competing interests.

Electronic supplementary material

ESM 1

(DOCX 259 kb)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pur, M.R.K., Hosseini, M., Faridbod, F. et al. Highly sensitive label-free electrochemiluminescence aptasensor for early detection of myoglobin, a biomarker for myocardial infarction. Microchim Acta 184, 3529–3537 (2017). https://doi.org/10.1007/s00604-017-2385-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-017-2385-y

Keywords

Navigation