Skip to main content
Log in

Gold nanoparticle based colorimetric probe for dopamine detection based on the interaction between dopamine and melamine

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

We report on a probe for the colorimetric and bare-eye detection of dopamine (DA). The optical effect is based on the finding that DA inhibits the melamine-induced aggregation of red gold nanoparticles (AuNPs) to form blue AuNP clusters. We presume that the aggregation induced by melamine is due to its strong hydrogen-bonding interactions with DA. The color changes can be monitored by spectrophotometry or the bare eye. The probes works over the 33 nM to 3.33 mM DA concentration range, and levels down to 33 nM can be quantified. The nanoprobe was successfully applied to the determination of DA in spiked serum.

A simple and sensitive colorimetric assay for DA detection using AuNPs as probes is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Pandurangachar M, Swamy BEK, Chandra U, Gilbert O, Sherigara BS (2009) Simultaneous determination of dopamine, ascorbic acid and uric acid at poly (Patton and Reeder’s) modified carbon paste electrode. Int J Electrochem Sci 4:672–683

    CAS  Google Scholar 

  2. Zhang R, Jin CD, Chert D, Hu XY (2009) Simultaneous electrochemical determination of dopamine, ascorbic acid and uric acid using poly (acid chrome blue K) modified glassy carbon electrode. Sensor Actuat B-Chem 138:174–181

    Article  CAS  Google Scholar 

  3. Dong YM, Chen XF, Li CL, Chen XG (2009) MEEKC with laser induced fluorescence detection of epinephrine and dopamine in TCM and in plasma of patients with rheumatic heart disease. Journal of Lanzhou Universiy (Natural Science) 45:77–81

    CAS  Google Scholar 

  4. Cooper JR, Hirsch FE, Agid Y, Graybiel AM (1999) Patterns of loss of dopamine containing neurons in Parkinson’s disease. Brain 122:1437–1448

    Article  Google Scholar 

  5. Kienast T, Heinz A (2006) Dopamine and the diseased brain. Drug Targets 5:109–131

    Article  CAS  Google Scholar 

  6. Lin P, Yan F (2011) Organic Thin-film transistors for chemical and biological sensing. Adv Mater 24:34–51

    Article  Google Scholar 

  7. Yu D, Zeng Y, Qi Y, Zhou T, Shi G (2012) A novel electrochemical sensor for determination of dopamine based on AuNPs@SiO2 core-shell imprinted composite. Biosens Bioelectron 38:270–277

    Article  CAS  Google Scholar 

  8. Robinson DL, Hermans A, Seipel AT, Wightman RM (2008) Monitoring rapid chemical communication in the brain. Chem Rev 108:2554–2584

    Article  CAS  Google Scholar 

  9. Sanghavi BJ, Wolfbeis OS, Hirsch T, Swami NS (2014) Nanomaterial-based electrochemical sensing of neurological drugs and neurotransmitters. Microchim Acta. doi:10.1007/s00604-014-1308-4

    Google Scholar 

  10. Zhao S, Huang Y, Shi M, Liu R, Liu YM (2012) Chemiluminescence resonance energy transfer-based detection for microchip electrophoresis. Anal Chem 82:2036–2041

    Article  Google Scholar 

  11. Li N, Guo J, Liu B, Yu Y, Cui H, Mao L, Lin Y (2009) Determination of monoamine neurotransmitters and their metabolites in a mouse brain microdialysate by coupling high-performance liquid chromatography with gold nanoparticle-initiated chemiluminescence. Anal Chim Acta 645:48–55

    Article  CAS  Google Scholar 

  12. Carrera V, Sabater E, Vilanova E, Sogorb MA (2007) A simple and rapid HPLC-MS method for the simultaneous determination of epinephrine, norepinephrine, dopamine and 5-hydroxytryptamine: application to the secretion of bovine chromaffin cell cultures. J Chromatogr B 847:88–94

    Article  CAS  Google Scholar 

  13. Wang AJ, Feng JJ, Dong WJ, Lu YH, Li ZH, Riekkola ML (2010) Spermine-graft-dextran non-covalent copolymer as coating material in separation of basic proteins and neurotransmitters by capillary electrophoresis. J Chromatogr A 1217:5130–5136

    Article  CAS  Google Scholar 

  14. Li Q, Li J, Yang Z (2007) Study of the sensitization of tetradecyl benzyl dimethyl ammonium chloride for spectrophotometric determination of dopamine hydrochloride using sodium 1,2-naphthoquinone-4-sulfonate as the chemical derivative chromogenic reagent. Anal Chim Acta 583:147–152

    Article  CAS  Google Scholar 

  15. Lee HC, Chen TH, Tseng WL, Lin CH (2012) Novel core etching technique of gold nanoparticles for colorimetric dopamine detection. Analyst 137:5352–5357

    Article  CAS  Google Scholar 

  16. Song YJ, Wei WL, Qu XG (2011) Colorimetric biosensing using smart materials. Adv Mater 23:4215–4236

    Article  CAS  Google Scholar 

  17. Deng H, Xu Y, Liu YH, Che ZJ, Guo HL, Shan S, Sun Y, Liu X, Huang K, Ma XW, Wu Y, Liang XJ (2012) Gold nanoparticles with asymmetric polymerase chain reaction for rapid colorimetric detection of DNA sequence. Anal Chem 3:1253–1258

    Article  Google Scholar 

  18. Wei XY, Qi L, Tan JJ, Liu RG, Wang FY (2010) A colorimetric sensor for determination of cysteine by carboxymethyl cellulose-functionalized gold nanoparticles. Anal Chim Acta 671:80–84

    Article  CAS  Google Scholar 

  19. Prachi P, Ajai KP, Vinay KG (2010) An improved colorimetric determination of micro amounts of chromium (VI) and chromium (III) using p-aminoacetophenone and phloroglucinol in different samples. J Anal Chem 65:582–587

    Article  Google Scholar 

  20. Mancuso M, Jiang L, Cesarman E, Erickson D (2013) Multiplexed colorimetric detection of Kaposi’s sarcoma associated herpesvirus and Bartonella DNA using gold and silver nanoparticles. Nanoscale 5:1678–1686

    Article  CAS  Google Scholar 

  21. Charych DH, Nagy JO, Spevak W, Bednarski MD (1993) Direct colorimetric detection of a receptor-ligand interaction by a polymerized bilayer assembly. Science 261:585–588

    Article  CAS  Google Scholar 

  22. Wang CG, Ma ZF (2005) Colorimetric detection of oligonucleotides using a polydiacetylene vesicle sensor. Anal Bioanal Chem 382:1708–1710

    Article  CAS  Google Scholar 

  23. Kim JM, Lee JS, Woo SY, Ahn DJ (2005) Unique effects of cyclodextrins on the formation and colorimetric transition of polydiacetylene vesicles. Macromol Chem Phys 206:2299–2306

    Article  CAS  Google Scholar 

  24. Cho JT, Woo SM, Ahn DJ, Ahn KD, Lee H, Kim JM (2003) Cyclodextrininduced color changes in polymerized diacetylene Langmuir-Schaefer films. Chem Lett 32:282–283

    Article  CAS  Google Scholar 

  25. Baron R, Zayats M, Willner I (2005) Dopamine-, l-DOPA-, adrenaline-, and noradrenaline-induced growth of Au nanoparticles: assays for the detection of neurotransmitters and of tyrosinase activity. Anal Chem 77:1566–1571

    Article  CAS  Google Scholar 

  26. Lin ZJ, Chen XM, Jia TT, Wang XD, Xie ZX, Oyama M, Chen X (2009) Fabrication of a colorimetric electrochemiluminescence sensor. Anal Chem 81:830–833

    Article  CAS  Google Scholar 

  27. Zhang YF, Li BX, Chen XL (2010) Simple and sensitive detection of dopamine in the presence of high concentration of ascorbic acid using gold nanoparticles as colorimetric probes. Microchim Acta 168:107–113

    Article  CAS  Google Scholar 

  28. Li P, Duan X, Chen ZZ, Liu Y, Xie T, Fang LB, Li XR (2011) A near infrared fluorescent probe for detecting copper (II) with high selectivity and sensitivity and its biological imaging applications. Chem Commun 47:7755–7757

    Article  CAS  Google Scholar 

  29. Goswami S, Sen D, Das NK (2010) A new highly selective, ratiometric and colorimetric fluorescence sensor for Cu2+ with a remarkable red shift in absorption and emission spectra based on internal charge transfer. Org Lett 12:856–859

    Article  CAS  Google Scholar 

  30. Huang CC, Li YF, Cao ZH, Tan WH, Chang HT (2005) Aptamer-modified gold nanoparticles for colorimetric determination of platelet-derived growth factors and their receptors. Anal Chem 77:5735–5741

    Article  CAS  Google Scholar 

  31. Haiss W, Thanh NTK, Aveyard J, Fernig DG (2007) Determination of size and concentration of gold nanoparticles from UV–vis spectra. Anal Chem 79:4215–4221

    Article  CAS  Google Scholar 

  32. Yang AK, Xue Y, Zhang Y, Zhang XF, Zhao H, Li XJ, He YJ, Yuan ZB (2013) A simple one-pot synthesis of graphene nanosheet/SnO2 nanoparticle hybrid nanocomposites and their application for selective and sensitive electrochemical detection of dopamine. J Mater Chem B 1:1804–1811

    Article  CAS  Google Scholar 

  33. Zheng Y, Wang Y, Yang XR (2011) Aptamer-based colorimetric biosensing of dopamine using unmodified gold nanoparticles. Sensor Actuat B-Chem 156:95–99

    Article  CAS  Google Scholar 

  34. Feng JJ, Guo H, Li YF, Wang YH, Chen WY, Wang AJ (2013) Single molecular functionalized gold nanoparticles for hydrogen-bonding recognition and colorimetric detection of dopamine with high sensitivity and selectivity. ACS Appl Mater Interfaces 5:1226–1231

    Article  CAS  Google Scholar 

  35. Liu JM, Wang XX, Cui ML, Lin LP, Jiang SL, Jiao L, Zhang LH (2013) A promising non-aggregation colorimetric sensor of AuNRs-Ag+ for determination of dopamine. Sensor Actuat B-Chem 176:97–102

    Article  CAS  Google Scholar 

Download references

Acknowledgments

All authors gratefully acknowledge the financial support of Scientific Research Project of Beijing Educational Committee (KM201410028006) and the Natural Science Foundation of China (No. 21371123).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhengbo Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Z., Zhang, C., Zhou, T. et al. Gold nanoparticle based colorimetric probe for dopamine detection based on the interaction between dopamine and melamine. Microchim Acta 182, 1003–1008 (2015). https://doi.org/10.1007/s00604-014-1417-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-014-1417-0

Keywords

Navigation