Skip to main content
Log in

Antibody-functionalized gold nanoclusters/gold nanoparticle platform for the fluorescence turn-on detection of cardiac troponin I

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A selective fluorescence turn-on immunosensor for the specific detection of cardiac troponin I (cTnI), the potent biomarker for myocardial infarction diagnosis, was developed with a nano couple comprised of protein-stabilized gold nanocluster and gold nanoparticle. The red fluorescence of cTnI-specific antibody tagged bovine serum albumin stabilized gold nanoclusters was quenched with gold nanoparticles (AuNP) via the intensive interaction between amine and hydroxyl functionalities of BSA and AuNP. Through this, the adsorption of gold nanoclusters at the surface of AuNP, resulting in a core-satellite assembly, was assumed to quench the fluorescence emission. While in the presence of cTnI antigen, this gets disturbed due to the formation of immunocomplex between cTnI antigen and antibody, which restricts the close interaction between gold clusters and nanoparticles, thereby restoring quenched fluorescence. The enhancement in fluorescence signal is directly related to the concentration of cTnI, and this facilitates the selective detection of cTnI in the linear concentration range 0.7 to 10 ng/mL without any interference from other potentially interfering co-existing biomolecules. An appreciable limit of detection of 0.51 ng/mL and a limit of quantification of 0.917 ng/mL for cTnI is comparable to that of the previous report.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Cardiovascular diseases (CVDs), (n.d.) https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds) (accessed May 2, 2023)

  2. Qureshi A, Gurbuz Y, Niazi JH (2012) Biosensors for cardiac biomarkers detection: a review. Sens Actuators B Chem 171–172:62–76. https://doi.org/10.1016/j.snb.2012.05.077

    Article  CAS  Google Scholar 

  3. Han X, Li S, Peng Z, Othman AM, Leblanc R (2016) Recent development of cardiac troponin I detection. ACS Sens 1:106–114. https://doi.org/10.1021/acssensors.5b00318

    Article  CAS  Google Scholar 

  4. Zhu L, Ye J, Yan M, Zhu Q, Wang S, Huang J, Yang X (2019) Electrochemiluminescence immunosensor based on Au nanocluster and hybridization chain reaction signal amplification for ultrasensitive detection of cardiac troponin I. ACS Sens 4:2778–2785. https://doi.org/10.1021/acssensors.9b01369

    Article  CAS  PubMed  Google Scholar 

  5. Raj V, Alex S (2021) Non-enzymatic colorimetric sensor for cardiac troponin I (cTnI) based on self-assembly of gold nanorods on heparin. Gold Bull 54:1–7. https://doi.org/10.1007/S13404-020-00287-W/METRICS

    Article  CAS  Google Scholar 

  6. Shan M, Li M, Qiu X, Qi H, Gao Q, Zhang C (2014) Sensitive electrogenerated chemiluminescence peptide-based biosensor for the determination of troponin I with gold nanoparticles amplification. Gold Bull 47:57–64. https://doi.org/10.1007/S13404-013-0113-X/TABLES/1

    Article  CAS  Google Scholar 

  7. Wu AHB, Apple FS, Gibler WB, Jesse RL, Warshaw MM, Valdes R (1999) National Academy of Clinical Biochemistry Standards of Laboratory Practice: recommendations for the use of cardiac markers in coronary artery diseases. Clin Chem 45:1104–1121. https://doi.org/10.1093/clinchem/45.7.1104

    Article  CAS  PubMed  Google Scholar 

  8. Chen G, Song F, Xiong X, Peng X (2013) Fluorescent nanosensors based on fluorescence resonance energy transfer (FRET). Ind Eng Chem Res 52:11228–11245. https://doi.org/10.1021/ie303485n

    Article  CAS  Google Scholar 

  9. Halawa MI, Lai J, Xu G (2018) Gold nanoclusters: synthetic strategies and recent advances in fluorescent sensing. Mater Today Nano 3:9–27. https://doi.org/10.1016/J.MTNANO.2018.11.001

    Article  Google Scholar 

  10. Zheng J, Nicovich PR, Dickson RM (2007) Highly fluorescent noble-metal quantum dots. Ann Rev Phys Chem 58:409–431. https://doi.org/10.1146/annurev.physchem.58.032806.104546

    Article  ADS  CAS  Google Scholar 

  11. Qu X, Li Y, Li L, Wang Y, Liang J, Liang J (2015) Fluorescent gold nanoclusters: synthesis and recent biological application, J Nanomater 2015. https://doi.org/10.1155/2015/784097

  12. Chen LY, Wang CW, Yuan Z, Chang HT (2015) Fluorescent gold nanoclusters: recent advances in sensing and imaging. Anal Chem 87:216–229. https://doi.org/10.1021/ac503636j

    Article  CAS  PubMed  Google Scholar 

  13. Li Y, Du Q, Zhang X, Cao H, Huang Y (2019) Kojic acid capped gold nanoclusters with aggregation-induced emission for fluorometric screening of the activity of alkaline phosphatase. Microchim Acta 186:1–8. https://doi.org/10.1007/S00604-019-3681-5/FIGURES/4

    Article  ADS  Google Scholar 

  14. Chen J, Li Z, Ge J, Yang R, Zhang L, Qu LB, Wang HQ, Zhang L (2015) An aptamer-based signal-on bio-assay for sensitive and selective detection of Kanamycin A by using gold nanoparticles. Talanta 139:226–232. https://doi.org/10.1016/J.TALANTA.2015.02.036

    Article  CAS  PubMed  Google Scholar 

  15. Leng Y, Xie K, Ye L, Li G, Lu Z, He J (2015) Gold-nanoparticle-based colorimetric array for detection of dopamine in urine and serum. Talanta 139:89–95. https://doi.org/10.1016/J.TALANTA.2015.02.038

    Article  CAS  PubMed  Google Scholar 

  16. Chuang KT, Lin YW (2017) Microwave-assisted formation of gold nanoclusters capped in bovine serum albumin and exhibiting red or blue emission. J Phys Chem C 121:26997–27003. https://doi.org/10.1021/acs.jpcc.7b09349

    Article  CAS  Google Scholar 

  17. Le Guével X, Hötzer B, Jung G, Hollemeyer K, Trouillet V, Schneider M (2011) Formation of fluorescent metal (Au, Ag) nanoclusters capped in bovine serum albumin followed by fluorescence and spectroscopy. J Phys Chem C 115:10955–10963. https://doi.org/10.1021/jp111820b

    Article  CAS  Google Scholar 

  18. Xie J, Zheng Y, Ying JY (2009) Protein-directed synthesis of highly fluorescent gold nanoclusters. https://doi.org/10.1021/JA806804U

  19. Bhatnagar D, Kumar V, Kumar A, Kaur I (2016) Graphene quantum dots FRET based sensor for early detection of heart attack in human. Biosens Bioelectron 79:495–499. https://doi.org/10.1016/j.bios.2015.12.083

    Article  CAS  PubMed  Google Scholar 

  20. Gogoi S, Khan R (2018) Fluorescence immunosensor for cardiac troponin T based on Förster resonance energy transfer (FRET) between carbon dot and MoS2 nano-couple. Phys Chem Chem Phys 20:16501–16509. https://doi.org/10.1039/c8cp02433b

    Article  CAS  PubMed  Google Scholar 

  21. Zheng J, Zhou C, Yu M, Liu J (2012) Different sized luminescent gold nanoparticles. Nanoscale 4:4073–4083. https://doi.org/10.1039/c2nr31192e

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  22. Bastús NG, Comenge J, Puntes V (2011) Kinetically controlled seeded growth synthesis of citrate-stabilized gold nanoparticles of up to 200 nm: size focusing versus Ostwald ripening. Langmuir 27:11098–11105. https://doi.org/10.1021/LA201938U/SUPPL_FILE/LA201938U_SI_001.PDF

    Article  PubMed  Google Scholar 

  23. Grys DB, De Nijs B, Salmon AR, Huang J, Wang W, Chen WH, Scherman OA, Baumberg JJ (2020) Citrate coordination and bridging of gold nanoparticles: the role of gold adatoms in AuNP aging. ACS Nano 14:8689–8696. https://doi.org/10.1021/ACSNANO.0C03050/ASSET/IMAGES/LARGE/NN0C03050_0004.JPEG

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Elsutohy MM, Selo A, Chauhan VM, Tendler SJB, Aylott JW (2018) Enhanced distance-dependent fluorescence quenching using size tuneable core shell silica nanoparticles. RSC Adv 8:35840–35848. https://doi.org/10.1039/C8RA05929B

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lin CY, Liu CH, Tseng WL (2010) Fluorescein isothiocyanate-capped gold nanoparticles for fluorescent detection of reactive oxygen species based on thiol oxidation and their application for sensing glucose in serum. Anal Methods 2:1810–1815. https://doi.org/10.1039/c0ay00428f

    Article  CAS  Google Scholar 

  26. Cumberland SL, Strouse GF (2002) Analysis of the nature of oxyanion adsorption on gold nanomaterial surfaces. Langmuir 18:269–276. https://doi.org/10.1021/la011278n

    Article  CAS  Google Scholar 

  27. Liu X, Atwater M, Wang J, Huo Q (2007) Extinction coefficient of gold nanoparticles with different sizes and different capping ligands. Colloids Surf B Biointerfaces 58:3–7. https://doi.org/10.1016/j.colsurfb.2006.08.005

    Article  CAS  PubMed  Google Scholar 

  28. Estimating the concentration of nanoparticles from the particle size data - Chemistry LibreTexts (n.d.) https://chem.libretexts.org/Bookshelves/Analytical_Chemistry/Supplemental_Modules_(Analytical_Chemistry)/Analytical_Sciences_Digital_Library/Contextual_Modules/Optical_Properties_of_Gold_Nanoparticles/01_Investigation_of_Gold_Nanoparticles/05_Estimating_the_concentration_of_nanoparticles_from_the_particle_size_data (accessed April 12, 2023)

  29. Leng Y, Jiang K, Zhang W, Wang Y (2017) Synthesis of gold nanoparticles from Au(I) ions that shuttle to solidify: application on the sensor array design. Langmuir 33:6398–6403. https://doi.org/10.1021/ACS.LANGMUIR.7B01150/SUPPL_FILE/LA7B01150_SI_001.PDF

    Article  CAS  PubMed  Google Scholar 

  30. Leng Y, Qu P, Wang A, Jiang K, Dong Y, Han P, Cheng J, Zhang L (2023) Fabrication of glass-based analytical devices by immobilizing nanomaterials on glass substrate with a fluorescent glue for the highly sensitive determination of mercury ions. Microchim Acta 190:1–8. https://doi.org/10.1007/S00604-023-05875-Z/FIGURES/5

    Article  Google Scholar 

  31. Govindaraju S, Ankireddy SR, Viswanath B, Kim J, Yun K (2017) Fluorescent gold nanoclusters for selective detection of dopamine in cerebrospinal fluid. Sci Rep 7. https://doi.org/10.1038/srep40298

  32. Lillo CR, Calienni MN, Rivas Aiello B, Prieto MJ, Rodriguez Sartori D, Tuninetti J, Toledo P, del V. Alonso S, Moya S, Gonzalez MC, Montanari J, Soler-Illia GJAA (2020) BSA-capped gold nanoclusters as potential theragnostic for skin diseases: photoactivation, skin penetration, in vitro, and in vivo toxicity. Mater Sci Eng C Mater Biol Appl 112. https://doi.org/10.1016/J.MSEC.2020.110891

  33. Medda L, Monduzzi M, Salis A (2015) The molecular motion of bovine serum albumin under physiological conditions is ion specific. Chem Commun 51:6663–6666. https://doi.org/10.1039/c5cc01538c

    Article  CAS  Google Scholar 

  34. Fehér B, Lyngsø J, Bartók B, Mihály J, Varga Z, Mészáros R, Pedersen JS, Bóta A, Varga I (2020) Effect of pH on the conformation of bovine serum albumin - gold bioconjugates, J Mol Liq. 309. https://doi.org/10.1016/j.molliq.2020.113065

  35. Nebu J, Anjali Devi JS, Aparna RS, Aswathy B, Aswathy AO, Sony G (2018) Fluorometric determination of morphine via its effect on the quenching of fluorescein by gold nanoparticles through a surface energy transfer process. Microchimica Acta 185. https://doi.org/10.1007/s00604-018-3050-9

  36. Ghosh D, Chattopadhyay N (2015) Gold and silver nanoparticles based superquenching of fluorescence: a review. J Lumin 160:223–232. https://doi.org/10.1016/j.jlumin.2014.12.018

    Article  CAS  Google Scholar 

  37. Qin H, Ma D, Du J (2018) Distance dependent fluorescence quenching and enhancement of gold nanoclusters by gold nanoparticles. Spectrochim Acta A Mol Biomol Spectrosc 189:161–166. https://doi.org/10.1016/j.saa.2017.08.025

    Article  ADS  CAS  PubMed  Google Scholar 

  38. Posokhov YO, Kyrychenko A, Ladokhin AS (2010) Steady-state and time-resolved fluorescence quenching with transition metal ions as short-distance probes for protein conformation. Anal Biochem 407:284–286. https://doi.org/10.1016/J.AB.2010.07.035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Oh E, Huston AL, Shabaev A, Efros A, Currie M, Susumu K, Bussmann K, Goswami R, Fatemi FK, Medintz IL (2016) Energy transfer sensitization of luminescent gold nanoclusters: more than just the classical Förster mechanism. Sci Rep 6. https://doi.org/10.1038/srep35538

  40. Yang X, Zhuo Y, Zhu S, Luo Y, Feng Y, Xu Y (2015) Selectively assaying CEA based on a creative strategy of gold nanoparticles enhancing silver nanoclusters’ fluorescence. Biosens Bioelectron 64:345–351. https://doi.org/10.1016/J.BIOS.2014.09.029

    Article  CAS  PubMed  Google Scholar 

  41. Chen C, Hildebrandt N (2020) Resonance energy transfer to gold nanoparticles: NSET defeats FRET. TrAC, Trends Anal Chem 123:115748. https://doi.org/10.1016/J.TRAC.2019.115748

    Article  CAS  Google Scholar 

  42. Chen C, Midelet C, Bhuckory S, Hildebrandt N, Werts MHV (2018) ‡ † Nanobiophotonics, nanosurface energy transfer from long-lifetime terbium donors to gold nanoparticles. J Phys Chem C 122:2023. https://doi.org/10.1021/acs.jpcc.8b06539

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Head, Department of Chemistry, University of Kerala for the support, laboratory, and instrumental facilities offered. We also express our thanks to Director, Advanced Research Laboratory for Molecular Sensing and Imaging (State plan fund, 2020-21, Govt. of Kerala). We also thank the Director, Advanced Research Laboratory for Molecular Sensing and Imaging (State Plan Fund 2020- 21, Govt. of Kerala), Department of Chemistry, University of Kerala, Kariavattom, The Head, Department of Optoelectronics, University of Kerala and The Director, STIC, CUSAT, Kochi, Kerala, for the sophisticated instrumental analysis provided.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sony George.

Ethics declarations

Ethical approval

The work has been done in accordance with the recommendations of the Indian Council of Medical Research (ICMR) and the Human Ethical Committee of the University of Kerala. The university-level ethical clearance number is ULECRIHS/UOK/2019/ 48.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 524 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anju, S.M., Merin, K.A., Varghese, S. et al. Antibody-functionalized gold nanoclusters/gold nanoparticle platform for the fluorescence turn-on detection of cardiac troponin I. Microchim Acta 191, 124 (2024). https://doi.org/10.1007/s00604-024-06194-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-024-06194-7

Keywords

Navigation