Skip to main content

Advertisement

Log in

Carbonate inclusions in Lower Cretaceous picrites from the Hončova hůrka Hill (Czech Republic, Outer Western Carpathians): Evidence for primary magmatic carbonates?

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

Porphyritic picrites from the Hončova hůrka site in the Silesian Unit (Western Carpathians) are composed mostly of olivine phenocrysts enclosed in a black fine-grained groundmass, which consists of clinopyroxene, biotite, magnetite, chlorite, feldspars, and zeolites. The rocks are variably affected by hydrothermal alteration. The freshest samples contain potentially primary igneous calcite and aragonite, which occur as globular inclusions hosted by olivine phenocrysts, or as fillings of the miarolitic cavities in the picrite groundmass. In this paper, we try to clarify the nature of investigated carbonates using the combination of several petrological methods. Based on the texture, mineral composition, and relationship to the alteration patterns of the host mineral, we distinguished three basic types of inclusions: carbonate inclusions, silicate inclusions, and a combined type consisting of both carbonate and silicate domains. Only the fresh olivine-hosted round carbonate globules can contain the primary igneous calcite. These globules cannot represent immiscible carbonatite melt since they lack Si, alkalis, and other essential components (e.g. P, F, Cl, and S) present in natural carbonate melts. Instead, they can be interpreted as product of equilibrium crystallization of calcite from carbonated silicate melt (i.e. crystal cumulates). In contrast, the calcite–aragonite assemblage in inclusions hosted by altered olivine and in miaroles most probably originated during recrystallization of primary calcite during late-magmatic or post-magmatic stages or is related to the superimposed hydrothermal alteration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Amundsen HEF (1987) Evidence for liquid immiscibility in the upper mantle. Nature 327:692–695

    Article  Google Scholar 

  • Andersen T (2008) Coexisting silicate and carbonatitic magmas in the Qassiarsuk complex, Gardar rift, southwest Greenland. Can Mineral 46:933–950

    Article  Google Scholar 

  • Asahara Y, Ohtani E (2001) Melting relations of the hydrous primitive mantle in the CMAS–H2O system at high pressures and temperatures, and implications for the generation of komatiites. Phys Earth Planet Inter 125:31–44

    Article  Google Scholar 

  • Bailey DK (1989) Carbonate melt from the mantle in the volcanoes of southeast Zambia. Nature 338:415–418

    Article  Google Scholar 

  • Bailey DK, Collier JD (2000) Carbonatite–melilitite association in the Italian collision zone and the Ugandan rifted craton: significant common factors. Mineral Mag 64:675–682

    Article  Google Scholar 

  • Bailey K, Kearns S, Mergoil J, Daniel JM, Paterson B (2006) Extensive dolomitic volcanism through the Limagne basin, central France: a new form of carbonatite activity. Mineral Mag 70:231–236

    Article  Google Scholar 

  • Ballhaus C, Berry RF, Green DH (1991) High pressure experimental calibration of the olivine–orthopyroxene–spinel–oxygen geobarometer: implications for the oxidation state of the upper mantle. Contrib Mineral Petrol 107:27–40

    Article  Google Scholar 

  • Brooker RA, Hamilton DL (1990) Three-liquid immiscibility and the origin of carbonatites. Nature 346:459–462

    Article  Google Scholar 

  • Brooker RA, Kjarsgaard BA (2010) Silicate–carbonate liquid immiscibility and phase relations in the system SiO2–Na2O–Al2O3–CaO–CO2 at 0.1–2.5 GPa with applications to carbonatite genesis. J Petrol 52:1281–1305

    Article  Google Scholar 

  • Buob A, Luth B, Schmidt M, Ulmer P (2006) Experiments on CaCO3–MgCO3 solid solutions at high pressure and temperature. Am Mineral 91:435–440

    Article  Google Scholar 

  • Buriánek D, Bubík M (2012) Rocks of teschenite association in the surroundings of Valašské Meziříčí. Acta Mus Morav Sci Geol 97:89–111 (in Czech)

    Google Scholar 

  • Buriánek D, Kropáč K, Dolníček Z (2013) Ultrabasic rocks of the teschenite association in the western part of the Silesian Unit. Geol výzk Mor Slez 20:79–84 (in Czech)

    Article  Google Scholar 

  • Burns SJ, Swart PK, Baker PA (1990) Geochemistry of secondary carbonates in leg 115 basalts: tracers of basalt/seawater interaction. Proc Ocean Drill Prog Sci Results 115:93–101

    Google Scholar 

  • Byrnes AP, Wyllie PJ (1981) Subsolidus and melting relations for join CaCO3–MgCO3 at 10 kb. Geochim Cosmochim Acta 45:321–328

    Article  Google Scholar 

  • Carlson WD (1983) The polymorphs of CaCO3 and the aragonite–calcite transformation. In: Reeder RJ (ed) Carbonates: mineralogy and chemistry. Mineralogical Society of America, Washington, pp 191–225

    Google Scholar 

  • Dalton JA, Presnall DC (1998) Carbonatitic melts along the solidus of model lherzolite in the system CaO–MgO–Al2O3–SiO2–CO2 from 3 to 7 GPa. Contrib Mineral Petrol 131:123–135

    Article  Google Scholar 

  • Dalton JA, Wood BJ (1993) The partitioning of Fe and Mg between olivine and carbonate and the stability of carbonate under mantle condition. Contrib Mineral Petrol 114:501–509

    Article  Google Scholar 

  • Deer WA, Howie RA, Zussman J (1997) Rock forming minerals: orthosilicates, 2nd edn. Geological Society of London, London

    Google Scholar 

  • Dolníček Z, Kropáč K, Uher P, Polách M (2010a) Mineralogical and geochemical evidence for multi-stage origin of mineral veins hosted by teschenites at Tichá, Outer Western Carpathians, Czech Republic. Chem Erde Geochem 70:267–282

    Article  Google Scholar 

  • Dolníček Z, Urubek T, Kropáč K (2010b) Post-magmatic hydrothermal mineralization associated with Cretaceous picrite (Outer Western Carpathians, Czech Republic): interaction between host rock and externally derived fluid. Geol Carpath 61:327–339

    Google Scholar 

  • Dolníček Z, Kropáč K, Janíčková K, Urubek T (2012) Diagenetic source of fluids causing the hydrothermal alteration of teschenites in the Silesian Unit, Outer Western Carpathians, Czech Republic: petroleum-bearing vein mineralization from the Stříbrník site. Mar Petrol Geol 37:27–40

    Article  Google Scholar 

  • Dostal J, Owen JV (1998) Cretaceous alkaline lamprophyres from northeastern Czech Republic: geochemistry and petrogenesis. Geol Rdsch 87:67–77

    Article  Google Scholar 

  • Droop GTR (1987) A general equation for estimating Fe3+ in ferromagnesian silicates and oxides from microprobe analysis, using stoichiometric criteria. Mineral Mag 51:431–437

    Article  Google Scholar 

  • Eliáš M, Skupien P, Vašíček Z (2003) A proposal for the modification of the lithostratigraphical division of the lower part of the Silesian Unit in the Czech area (Outer Western Carpathians). Sbor věd Prací Vys Šk báň-Techn Univ, Ř horn-geol 49:7–13 (in Czech)

    Google Scholar 

  • Freestone IC, Hamilton DL (1980) The role of liquid immiscibility in the genesis of carbonatites—an experimental study. Contrib Mineral Petrol 73:105–117

    Article  Google Scholar 

  • Grabowski J, Krzemiński L, Nescieruk P, Szydlo A, Paszkowski M, Pecskay Z, Wójtowicz A (2003) Geochronology of teschenitic intrusions in the Outer Western Carpathians of Poland—constraints from 40K/40Ar ages and biostratigraphy. Geol Carpath 54:385–393

    Google Scholar 

  • Grabowski J, Krzemiński L, Nescieruk P, Strnawska E (2006) Paleomagnetism of the teschenitic rocks (Lower Cretaceous) in the Outer Western Carpathians of Poland: constrains for tectonic rotations in the Silesian unit. Geophys J Int 166:1077–1094

    Article  Google Scholar 

  • Green DH (1973) Experimental melting studies on a model upper mantle composition at high pressures under water-saturated and water-undersaturated conditions. Earth Planet Sci Lett 19:37–53

    Article  Google Scholar 

  • Guzmics T, Mitchell RH, Szabó C, Berkesi M, Milke R, Abart R (2011) Carbonatite melt inclusions in coexisting magnetite, apatite and monticellite in Kerimasi calciocarbonatite, Tanzania: melt evolution and petrogenesis. Contrib Mineral Petrol 161:177–196

    Article  Google Scholar 

  • Guzmics T, Mitchell RH, Szabó C, Berkesi M, Milke R, Ratter K (2012) Liquid immiscibility between silicate, carbonate and sulfide melts in melt inclusions hosted in co-precipitated minerals from Kerimasi volcano (Tanzania): evolution of carbonated nephelinitic magma. Contrib Mineral Petrol 164:101–122

    Article  Google Scholar 

  • Harmer RE, Gittins J (1998) The case for primary, mantle-derived carbonatite magma. J Petrol 39:1895–1903

    Article  Google Scholar 

  • Hirschmann MM (2000) Mantle solidus: experimental constraints and the effects of peridotite composition. G-cubed 1:1042

    Google Scholar 

  • Hovorka D, Spišiak J (1988) Mesozoic volcanism of the Western Carpathians. Veda, Bratislava (in Slovak)

    Google Scholar 

  • Humphreys ER, Bailey K, Hawkesworth CJ, Wall F (2009) Carbonate inclusions in mantle olivines: mantle carbonatite. Goldschmidt Conference Abstracts 2009, A564

  • Humphreys ER, Bailey K, Hawkesworth ChJ, Wall F, Najorka J, Rankin AH (2010) Aragonite in olivine from Calatrava, Spain—evidence for mantle carbonatite melts from >100 km depth. Geology 38:911–914

    Article  Google Scholar 

  • Hurai V, Huraiová M, Milovský R, Luptáková J, Konečný P (2013) High-pressure aragonite phenocrysts in carbonatite and carbonated syenite xenoliths within an alkali basalt. Am Mineral 98:1074–1077

    Article  Google Scholar 

  • Ionov D (1998) Trace element composition of mantle-derived carbonates and coexisting phase in peridotite xenoliths from alkali basalts. J Petrol 39:1931–1941

    Article  Google Scholar 

  • Kjarsgaard BA (1998) Phase relations of a carbonated high-CaO nephelinite at 0.2 and 0.5 GPa. J Petrol 39:2061–2075

    Article  Google Scholar 

  • Kjarsgaard BA, Hamilton DL (1988) Liquid immiscibility and the origin of alkali-poor carbonatites. Mineral Mag 52:43–55

    Article  Google Scholar 

  • Kjarsgaard BA, Peterson T (1991) Nephelinite–carbonatite liquid immiscibility at Shombole volcano, East Africa: petrographic and experimental evidence. Mineral Petrol 43:293–314

    Article  Google Scholar 

  • Kjarsgaard BA, Hamilton DL, Peterson TD (1995) Peralkaline nephelinite/carbonatite liquid immiscibility: comparison of phase compositions in experiments and natural lavas from Oldoinyo Lengai. In: Bell K, Keller J (eds) Carbonatite volcanism: Oldoinyo Lengai and the petrogenesis of natrocarbonatites. Springer, Berlin, pp 163–190

    Chapter  Google Scholar 

  • Kogarko LN, Henderson CMB, Pacheco H (1995) Primary Ca-rich carbonatite magma and carbonate–silicate–sulphide liquid immiscibility in the upper mantle. Contrib Mineral Petrol 121:267–274

    Article  Google Scholar 

  • Kudělásková J (1987) Petrology and geochemistry of selected rock types of teschenite association, Outer Western Carpathians. Geol Carpath 38:545–573

    Google Scholar 

  • Kudělásková J, Kudělásek V, Matýsek D (1993) Chemical and petrological study of picritic rocks from Podbeskydí area. Sbor věd Prací Vys Šk báň-Techn Univ, Ř horn-geol 39:63–72 (in Czech)

    Google Scholar 

  • Kynický J, Xu C, Bajer A, Samec P, Kynická A (2009) New exploration of teschenite clan rocks: Sr and REE-rich fluorapatites. Geol výzk Mor Slez 16:66–69 (in Czech)

    Google Scholar 

  • Le Bas MJ (1977) Carbonatite–nephelinite volcanism. Wiley, London

    Google Scholar 

  • Leat PT, Riley TR, Storey BC, Kelley SP, Millar IL (2000) Middle Jurassic ultramafic lamprophyre dyke within the Ferrar magmatic province, Pensacola Mountains, Antarctica. Mineral Mag 64:95–111

    Article  Google Scholar 

  • Lee WJ, Wyllie PJ (1998) Petrogenesis of carbonatite magmas from mantle to crust, constrained by the system CaO–(MgO + FeO*)–(Na2O + K2O)–(SiO2 + Al2O3 + TiO2)–CO2. J Petrol 39:495–517

    Article  Google Scholar 

  • Lee WJ, Wyllie PJ, George RR (1994) CO2-rich glass, round calcite crystals, and no liquid immiscibility in the system CaO–SiO2–CO2 at 2.5 GPa. Am Mineral 79:1135–1144

    Google Scholar 

  • Lee CT, Rudnick RL, McDonough WF, Horn I (2000) Petrologic and geochemical investigation of carbonates in peridotite xenoliths from northeastern Tanzania. Contrib Mineral Petrol 139:470–484

    Article  Google Scholar 

  • Lucińska-Anczkiewicz A, Villa IM, Anczkiewicz R, Ślaczka A (2002) 40Ar/39Ar dating of alkaline lamprophyres from the Polish Western Carpathians. Geol Carpath 53:45–52

    Google Scholar 

  • Macdonald R, Kjarsgaard BA, Skilling IP, Davies GR, Hamilton DL, Black S (1993) Liquid immiscibility between trachyte and carbonate in ash flow tuffs from Kenya. Contrib Mineral Petrol 144:276–287

    Article  Google Scholar 

  • Machel HG (1985) Cathodoluminescence in calcite and dolomite and its chemical interpretation. Geosci Can 12:139–147

    Google Scholar 

  • Matýsek D (1989) Geochemical classification of rock of teschenite association. Sbor věd Prací Vys Šk báň-Techn Univ, Ř horn-geol 35:301–324 (in Czech)

    Google Scholar 

  • Mitchell RH (2009) Peralkaline nephelinite–natrocarbonatite immiscibility and carbonatite assimilation at Oldoinyo Lengai, Tanzania. Contrib Mineral Petrol 158:589–598

    Article  Google Scholar 

  • Morimoto N, Fabries J, Ferguson AK, Ginzburg IV, Ross M, Seifert FA, Zussman J, Aoki K (1988) Nomenclature of pyroxenes. Mineral Mag 52:535–550

    Article  Google Scholar 

  • Narebski W (1990) Early rift stage in the evolution of western part of the Carpathians: geochemical evidence from limburgite and teschenite rock series. Geol Carpath 41:521–528

    Google Scholar 

  • Nielsen TFD, Solovova IP, Veksler IV (1997) Parental melts of melilitolite and origin of alkaline carbonatite: evidence from crystallised melt inclusions, Gardiner complex. Contrib Mineral Petrol 126:331–344

    Article  Google Scholar 

  • O’Neill HSC, Wall VJ (1987) The olivine–orthopyroxene–spinel oxygen geobarometer, the nickel precipitation curve, and the oxygen fugacity of the Earth’s upper mantle. J Petrol 28:1169–1191

    Article  Google Scholar 

  • Pacák O (1926) Volcanic rocks on the northern foothill of Moravian Beskydy Mountains. Czech Academy of Sciences and Art, Prague (in Czech)

    Google Scholar 

  • Panina LI (2005) Multiphase carbonate-salt immiscibility in carbonatite melts: data on melt inclusions from the Krestovskiy massif minerals (Polar Siberia). Contrib Mineral Petrol 150:19–36

    Article  Google Scholar 

  • Presnall DC, Gudfinnsson GH (2005) Carbonate-rich melts in the oceanic low-velocity zone and deep mantle. In: Foulger GL, Natland JH, Presnall DC, Anderson DL (eds) Plates, plumes, and paradigms. Spec Pap Geol Soc Am 388:207–216

  • Pyle J, Haggerty SE (1994) Silicate–carbonate liquid immiscibility in upper-mantle eclogites: implication for natrosilicic and carbonatitic conjugate melts. Geochim Cosmochim Acta 58:2997–3011

    Article  Google Scholar 

  • Rieder M, Cavazzini G, D’Yakonov Y, Frank-Kamenetskii VA, Gottardi G, Guggenheim S, Koval PV, Müller G, Neiva AMR, Radoslovich EW, Robert JL, Sassi FP, Takeda H, Weiss Z, Wones DR (1998) Nomenclature of the micas. Can Mineral 36:905–912

    Google Scholar 

  • Ryan CG, Griffin WL, Pearson NJ (1996) Garnet geotherms: pressure–temperature data from Cr-pyrope garnet xenocrysts in volcanic rocks. J Geophys Res 101:5611–5625

    Article  Google Scholar 

  • Šmíd B (1978) The investigation of igneous rocks of the teschenite association. Central Geological Survey, Prague

    Google Scholar 

  • Sobolev AV, Hofmann AW, Sobolev SV, Nikogosian IK (2005) An olivine-free mantle source of Hawaiian shield basalts. Nature 434:590–597

    Article  Google Scholar 

  • Sokolov SV, Veksler IV, Senin VG (1999) Alkalis in carbonatite magmas: new evidence from melt inclusions. Petrology 7:602–609

    Google Scholar 

  • Solovova IP, Girnis AV, Ryabchikov ID, Simakin SG (2006) High temperature carbonatite melt and its interrelations with alkaline magmas of the Dunkel’dyk complex, southeastern Pamirs. Dokl Earth Sci 410:1148–1151

    Article  Google Scholar 

  • Spišiak J, Hovorka D (1997) Petrology of the Western Carpathians Cretaceous primitive alcaline volcanics. Geol Carpath 48:113–121

    Google Scholar 

  • Spišiak J, Mikuš T (2008) Ba a Sr-rich phases in Cretaceous alkaline volcanites of the External Western Carpathians. In: Jurkovič L, Ďurža O, Slaninka I. (eds) Geochémia 2008 proceedings, ŠGÚDŠ Bratislava, pp 135–137 (in Slovak)

  • Stoppa F, Rosatelli G, Wall F, Jeffries T (2005) Geochemistry of carbonatite–silicate pairs in nature: a case history from Central Italy. Lithos 85:26–47

    Article  Google Scholar 

  • Veksler IV, Lentz D (2006) Parental magmas of plutonic carbonatites, carbonate–silicate immiscibility and decarbonation reactions: evidence from melt and fluid inclusions. In: Webster JD (ed) Melt inclusions in plutonic rocks, vol 36. Short Course Mineral Assoc Canada, Canada, pp 123–150

    Google Scholar 

  • Voigt M, von der Handt A (2011) Influence of subsolidus processes on the chromium number in spinel in ultramafic rocks. Contrib Mineral Petrol 162:675–689

    Article  Google Scholar 

  • Wlodyka R (2010) The evolution of mineral composition of the Cieszyn magma province rocks. Wydawnictwo Uniwersytetu Slaskiego, Katowice (in Polish)

    Google Scholar 

  • Wlodyka R, Karwowski L (2004) The alkaline magmatism from the Polish Western Carpathians. Polskie Towarysztvo Mineralogiczne, Prace Specialne, pp 23–31

    Google Scholar 

  • Yatabe A, Vanko DA, Ghazi AM (2000) Petrography and chemical compositions of secondary calcite and aragonite in Juan de Fuca Ridge basalts altered at low temperature. Proc Ocean Drill Prog Sci Results 168:137–148

    Google Scholar 

Download references

Acknowledgments

P. Gadas (MU Brno) is thanked for the assistance during the microprobe work. The study was supported by Projects GAČR 205/07/P130, IGA UP PrF/2011/010 (to Z.D.), project of the Czech Geological Survey No. 321180 (to D.B.), and the project LO1304 “Support of the sustainability of the Institute of Molecular and Translational Medicine” (to V.M.). We also thank two anonymous reviewers and editor-in-chief Wolf-Christian Dullo for helpful comments which increased the clarity of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kamil Kropáč.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kropáč, K., Dolníček, Z., Buriánek, D. et al. Carbonate inclusions in Lower Cretaceous picrites from the Hončova hůrka Hill (Czech Republic, Outer Western Carpathians): Evidence for primary magmatic carbonates?. Int J Earth Sci (Geol Rundsch) 104, 1299–1315 (2015). https://doi.org/10.1007/s00531-015-1152-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-015-1152-8

Keywords

Navigation