Skip to main content
Log in

Evidence for post-zygotic self-incompatibility in Handroanthus impetiginosus (Bignoniaceae)

  • Original Article
  • Published:
Plant Reproduction Aims and scope Submit manuscript

Abstract

Late-acting self-incompatibility (LSI) has been defined as a genetically controlled self-sterility mechanism that prevents seed set by selfing, despite normal pollen tube growth and ovule penetration in self-pollinated pistils. In species of the Bignoniaceae with LSI, such as Handroanthus impetiginosus, the selfed pistils are characterized by a marked delay in ovule penetration, fertilization, and endosperm initiation, followed by uniform pistil abscission. This highlights the contentious possibility of a post-zygotic self-incompatibility system. However, previous studies were unable to confirm fusion of the sperm and egg cell nuclei in selfed ovules. In the present study, the cytology of the embryo sac, double fertilization, and pistil longevity was investigated in H. impetiginosus using comparative nuclei microspectrofluorometry of DAPI-stained sections of self- vs. unpollinated pistils. Differences in both pistil longevity and ovary size between self- and unpollinated flowers at the time of pistil abscission were significant. Zygotes with double the DNA content in their nuclei relative to unfertilized egg cell nuclei were verified in selfed ovules from the first day after pollination onward, and G1 karyogamy appeared to have occurred. Our cytological analysis clearly indicates that ovules of self-pollinated pistils in H. impetiginosus are fertilized before pistil abscission but no embryogenesis initiation occurs, which strongly supports the idea of a post-zygotic self-incompatibility mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ayres M, Ayres M Jr, Ayres DL, Santos AS (2000) BioEstat 2.0. Aplicações estatísticas nas áreas das ciências biológicas e médicas. Sociedade Civil Mamirauá, Belém

    Google Scholar 

  • Batygina TB, Vasilyeva VE (2001) In vivo fertilization. In: Bhojwani SS, Soh WY (eds) Current trends in embryology of angiosperms. Kluwer Academic Publishers, Dordrecht, pp 101–142

    Chapter  Google Scholar 

  • Batygina TB, Vinogradova GY (2007) Phenomenon of polyembryony. Genetic heterogeneity of seeds. Russ J Dev Biol 38:126–151. doi:10.1134/S1062360407030022

    Article  Google Scholar 

  • Bertin R, Barnes C, Guttman SI (1989) Self-sterility and cryptic self-fertility in Campsis radicans (Bignoniaceae). Bot Gaz 150:397–403

    Article  Google Scholar 

  • Bittencourt NS Jr, Moraes CIG (2010) Self-fertility and polyembryony in South American yellow trumpet trees (Handroanthus chrysotrichus and H. ochraceus, Bignoniaceae): a histological study of postpollination events. Plant Syst Evol 288:59–76. doi:10.1007/s00606-010-0313-2

    Article  Google Scholar 

  • Bittencourt NS Jr, Semir J (2004) Pollination biology and breeding system of Zeyheria montana (Bignoniaceae). Plant Syst Evol 247:241–254. doi:10.1007/s00606-004-0142-2

    Article  Google Scholar 

  • Bittencourt NS Jr, Semir J (2005) Late-acting self-incompatibility and other breeding systems in Tabebuia (Bignoniaceae). Int J Plant Sci 166:493–506. doi:10.1086/428758

    Article  Google Scholar 

  • Bittencourt NS Jr, Semir J (2006) Floral biology and late-acting self-incompatibility in Jacaranda racemosa (Bignoniaceae). Aust J Bot 54:315–324. doi:10.1071/BT04221

    Article  Google Scholar 

  • Bittencourt NS Jr, Gibbs PE, Semir J (2003) Histological study of post-pollination events in Spathodea campanulata Beauv. (Bignoniaceae), a species with late-acting self-incompatibility. Ann Bot-Lond 91:827–834. doi:10.1093/aob/mcg088

    Article  Google Scholar 

  • Bittencourt NS Jr, Pereira EJ Jr, São-Thiago PS, Semir J (2011) The reproductive biology of Cybistax antisyphilitica (Bignoniaceae), a characteristic tree of the South American savannah-like “Cerrado” vegetation. Flora 206:872–886. doi:10.1016/j.flora.2011.05.004

    Article  Google Scholar 

  • Bullock SH (1985) Breeding systems in the flora of a tropical deciduous forest in Mexico. Biotropica 17:287–301

    Article  Google Scholar 

  • Burbidge AH, James SH (1991) Postzygotic seed abortion in the genetic system of Stylidium (Angiospermae: Stylidiaceae). J Hered 82:319–328

    Article  Google Scholar 

  • Carmichael JS, Friedman WE (1995) Double fertilization in Gnetum gnemon: the relationship between the cell cycle and sexual reproduction. Plant Cell 7:1975–1988. doi:10.1105/tpc.7.12.1975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cope FW (1962) The mechanism of pollen incompatibility in Theobroma cacao L. Heredity 17:157–182. doi:10.1038/hdy.1962.14

    Article  Google Scholar 

  • Costa ME, Sampaio DS, Paoli AAS, Leite SCAL (2004) Poliembrionia e aspectos da embriogênese em Tabebuia ochracea (Chamisso) Standley (Bignoniaceae). Rev Bras Bot 27:395–406. doi:10.1590/S0100-84042004000200017

    Article  Google Scholar 

  • Davis GL (1966) Systematic embryology of the angiosperms. John Wiley & Sons, New York

    Google Scholar 

  • Friedman WE (1991) Double fertilization in Ephedra trifurca, a non-flowering plant: the relationship between fertilization events and the cell cycle. Protoplasma 165:106–120. doi:10.1007/BF01322281

    Article  Google Scholar 

  • Friedman WE (1999) Expression of the cell cycle in sperm of Arabidopsis: implications for understanding patterns of gametogenesis and fertilization in plants and other eukaryotes. Development 126:1065–1075

    CAS  PubMed  Google Scholar 

  • Gandolphi G, Bittencourt NS Jr (2010) Sistema reprodutivo do ipê-branco—Tabebuia roseo-alba (Ridlay) Sandwith (Bignoniaceae). Acta Bot Bras 24:840–851. doi:10.1590/S0102-33062010000300026

    Article  Google Scholar 

  • Gentry AH (1992) Bignoniaceae—part II (Tribe Tecomeae). Flora Neotropica, monograph 25(II). The New York Botanical Garden, New York

    Google Scholar 

  • Gerassimova-Navashina H (1960) A contribution to the cytology of fertilization in flowering plants. Nucleus 3:111–120

    Google Scholar 

  • Gibbs PE (2014) Late-acting self-incompatibility—the pariah breeding system in flowering plants. New Phytol 203:717–734. doi:10.1111/nph.12874

    Article  PubMed  Google Scholar 

  • Gibbs PE, Bianchi MB (1999) Does late-acting self-incompatibility (LSI) show family clustering? Two more species of Bignoniaceae with LSI: Dolichandra cynanchoides and Tabebuia nodosa. Ann Bot-Lond 84:447–457. doi:10.1006/anbo.1999.0933

    Article  Google Scholar 

  • Gibbs PE, Bianchi MB, Taroda Ranga N (2004) Effects of self-, chase and mixed self/cross-pollinations on pistil longevity and fruit set in Ceiba species (Bombacaceae) with late-acting self-incompatibility. Ann Bot-Lond 94:305–310. doi:10.1093/aob/mch141

    Article  CAS  Google Scholar 

  • Govindu HC (1950) Studies in the embryology of some members of Bignoniaceae. Proc Indian Acad Sci B 32:164–178

    Google Scholar 

  • Hao Y-Q, Zhao X-F, She D-Y, Xu B, Zhang D-Y, Liao W-J (2012) The role of late-acting self-incompatibility and early-acting inbreeding depression in governing female fertility in monkshood, Aconitum kusnezoffii. PLOS ONE 7:e47034. doi:10.1371/journal.pone.0047034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Husband BC, Schemske DW (1996) Evolution of the magnitude and timing of inbreeding depression in plants. Evolution 50:54–70. doi:10.2307/2410780

    Article  PubMed  Google Scholar 

  • Johri BM, Ambegaokar KB, Srivastava PS (1992a) Comparative embryology of angiosperms, vol I. Springer, Berlin

    Book  Google Scholar 

  • Johri BM, Ambegaokar KB, Srivastava PS (1992b) Comparative embryology of angiosperms, vol II. Springer, Berlin

    Book  Google Scholar 

  • Klekowski EJ (1988) Mutation, developmental selection, and plant evolution. Coilumbia University Press, New York

    Google Scholar 

  • Konyar ST (2014) Ultrastructure of microsporogenesis and microgametogenesis in Campsis radicans (L.) Seem. (Bignoniaceae). Plant Syst Evol 300:303–320. doi:10.1007/s00606-013-0883-x

    Article  Google Scholar 

  • LaDoux T, Friar EA (2006) Late-acting self-incompatibility in Ipomopsis tenuifolia (Gray) V. Grant (Polemoniaceae). Int J Plant Sci 167:463–471. doi:10.1086/500985

    Article  Google Scholar 

  • Lipow SR, Wyatt R (2000) Single gene control of postzygotic self-incompatibility in poke milkweed, Asclepias exaltata L. Genetics 154:893–907

    CAS  PubMed  PubMed Central  Google Scholar 

  • Meinke DW (1991) Perspectives on genetic analysis of plant embryogenesis. Plant Cell 3:857–866. doi:10.1105/tpc.3.9.857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Milet-Pinheiro P, Carvalho AT, Kevan PG, Schlindwein C (2009) Permanent stigma closure in Bignoniaceae: mechanisms and implications for fruit set in self-incompatible species. Flora 204:82–88. doi:10.1016/j.flora.2007.11.006

    Article  Google Scholar 

  • Mogensen HL, Holm PB (1995) Dynamics of nuclear DNA quantities during zygote development in barley. Plant Cell 7:487–494. doi:10.1105/tpc.7.4.487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mogensen HL, Leduc N, Matthys-Rochon E, Dumas C (1995) Nuclear DNA amounts in the egg and zygote of maize (Zea mays L.). Planta 197:641–645. doi:10.1007/BF00191572

    Article  CAS  Google Scholar 

  • Natesh S, Rau MA (1984) The embryo. In: Johri BM (ed) Embryology of angiosperms. Springer, Berlin, pp 377–443

    Chapter  Google Scholar 

  • O’Brien TP, Feder N, McCully ME (1964) Polychromatic staining of plant cell walls by toluidine blue O. Protoplasma 59:367–373. doi:10.1007/BF01248568

    Google Scholar 

  • Olmstead RG, Zjhra ML, Lohmann LG, Grose SO, Eckert AJ (2009) A molecular phylogeny and classification of Bignoniaceae. Am J Bot 96:1731–1743. doi:10.3732/ajb.0900004

    Article  CAS  PubMed  Google Scholar 

  • Raghavan V (2003) Some reflections on double fertilization, from its discovery to the present. New Phytol 159:565–583. doi:10.1046/j.1469-8137.2003.00846.x

    Article  CAS  Google Scholar 

  • Sage TL, Bertin R, Williams EG (1994) Ovarian and other late-acting self-incompatibility. In: Williams EG, Clark AE, Knox RB (eds) Genetic control of self-incompatibility and reproductive development in flowering plants, vol 2. Kluwer, Dordrecht, pp 116–140

    Chapter  Google Scholar 

  • Sampaio DS, Bittencourt NS Jr, Oliveira PE (2013) Sporophytic apomixis in polyploid Anemopaegma species (Bignoniaceae) from central Brazil. Bot J Linn Soc 173:77–91. doi:10.1111/boj.12076

    Article  Google Scholar 

  • Sampaio DS, Mendes-Rodrigues C, Engel TBJ, Rezende TM, Bittencourt NS Jr, Oliveira PE (2016) Pollination biology and breeding system of syntopic Adenocalymma nodosum and A. peregrinum (Bignonieae, Bignoniaceae) in the Brazilian savanna. Flora 223:19–29. doi:10.1016/j.flora.2016.04.009

    Article  Google Scholar 

  • Schlindwein C, Westerkamp C, Carvalho AT, Milet-Pinheiro P (2014) Visual signaling of nectar-offering flowers and specific morphological traits favour robust bee pollinators in the mass-flowering tree Handroanthus impetiginosus (Bignoniaceae). Bot J Linn Soc 176:396–407. doi:10.1111/boj.12212

    Article  Google Scholar 

  • Seavey SR, Bawa KS (1986) Late-acting self-incompatibility in angiosperms. Bot Rev 52:195–219. doi:10.1007/BF02861001

    Article  Google Scholar 

  • Seavey SR, Carter SK (1994) Self-sterility in Epilobium obcordatum (Onagraceae). Am J Bot 81:331–338

    Article  Google Scholar 

  • Shivaramiah G (1998) Endosperm development in Bignoniaceae. Phytomorphology 48:45–50

    Google Scholar 

  • Stevens AD (1994) Reproduktionsbiologie einiger Bignoniaceen in Cerrado brasiliens. Biosystematics and ecology series 5. Österreichische Akademie der Wissenschaften, Wien

    Google Scholar 

  • Tian RQ, Yuan T, Russell SD (2005) Relationship between double fertilization and the cell cycle in male and female gametes of tobacco. Sex Plant Reprod 17:243–252. doi:10.1007/s00497-004-0233-9

    Article  Google Scholar 

  • Valtueña FJ, Rodríguez-Riaño T, Espinosa F, Ortega-Olivencia A (2010) Self-sterility in two Cytisus species (Leguminosae, Papilionoideae) due to early-acting inbreeding depression. Am J Bot 97:123–135. doi:10.3732/ajb.0800332

    Article  PubMed  Google Scholar 

  • van Went JL, Willemse MTM (1984) Fertilization. In: Johri BM (ed) Embryology of angiosperms. Springer, Berlin, pp 273–317

    Chapter  Google Scholar 

  • Wiens D, Calvin CL, Wilson CA, Davern CI, Frank D, Seavey SR (1987) Reproductive success, spontaneous embryo abortion, and genetic load in flowering plants. Oecologia 71:501–509. doi:10.1007/BF00379288

    Article  CAS  PubMed  Google Scholar 

  • Willemse MTM, van Went JL (1984) The female gametophyte. In: Johri BM (ed) Embryology of angiosperms. Springer, Berlin, pp 159–196

    Chapter  Google Scholar 

  • Williams JH, Friedman WE (2002) Identification of diploid endosperm in an early angiosperm lineage. Nature 415:522–526. doi:10.1038/415522a

    Article  PubMed  Google Scholar 

  • Woodard JW (1956) DNA in gametogenesis and embryogeny in Tradescantia. J Biophys Biochem Cytol 2:765–776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zar JH (1999) Biostatistical analysis. Prentice-Hall, New Jersey

    Google Scholar 

Download references

Acknowledgements

I am grateful to the Fundação de Amparo à Pesquisa do Estado de São Paulo (Process number 2005/59234-4) for financial support. My thanks to Dr. William E. Friedman and staff at the Department of Ecology and Evolutionary Biology, University of Colorado at Boulder (USA), for permission to use the equipment and for help with microspectrofluoromety procedures, and to the two anonymous reviewers for critical reading of the manuscript and valuable suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nelson Sabino Bittencourt Júnior.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bittencourt Júnior, N.S. Evidence for post-zygotic self-incompatibility in Handroanthus impetiginosus (Bignoniaceae). Plant Reprod 30, 69–79 (2017). https://doi.org/10.1007/s00497-017-0300-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00497-017-0300-7

Keywords

Navigation