Skip to main content
Log in

Pollen tube growth and self incompatibility in Matricaria recutita

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Understanding of fertilization procedures and crossing barriers is essential for various plant breeding methods. Growth or inhibition of pollen tubes, therefore, is a crucial issue in terms of propagation, in particular concerning the determination of self incompatible (SI-) plants. In German Chamomile, vegetatively propagated SI-plants would be a highly appreciated breeding tool for the formation of maternal lines for specific crossings. Following the idea to enhance knowledge of aspects of pollination and to develop a fast procedure of determination of SI-plants, two different methods of microscopic analysis of pollen tube growth in pistils were developed. Under light and under fluorescence microscopy diverse stages of pollen tube growth could be made visible. These included growth starts at the stigma, active pollen tubes with regular callose deposits on their way through the style and globular stage embryos in the ovary. Furthermore, SI-tests and selections within six accessions of German Chamomile and among 220 plants were carried out. In this case, self incompatibility (SI) was determined as staying seedless after multiple hand pollination under crispac bag isolation, observed at not less than three flower heads per plant. Diploid varieties showed a tendency to establish SI, rather than their tetraploid relatives, although a high variability between accessions was given. An overall accordance between SI, examined via seed set, and evidence of pollen tubes could not be assessed. Nevertheless, new and detailed insight in fertilization procedures in German chamomile could be gained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Albooghobaish N, Zarinkamar F (2012) Study of inflorescence development under lead toxicity in Matricaria chamomilla. Int Proc Chem Biol Environ Eng (IPCBEE) 33:253–258

    CAS  Google Scholar 

  • Allard R (1999) Principles of plant breeding, 2nd edn. Wiley, New York

    Google Scholar 

  • Anderson N, Ascher P, Widmer R, Luby J (1990) Rapid generation cycling of chrysanthemum using laboratory seed development and embryo rescue techniques. J Am Soc Hortic Sci 115(2):329–336

    Google Scholar 

  • Andreucci A, Ciccarelli D, Pagni A Desideri I (2008) Glandular hairs and secretory ducts of Matricaria chamomilla (Asteraceae): morphology and histochemistry. Ann Bot Fenn 45(1):11–18

    Article  Google Scholar 

  • Atlagic J, Terzic S, Marjanovic-Jeromela A (2012) Staining and fluorescent microscopy methods for pollen viability determination in sunflower and other plant species. Ind Crops Prod 35:88–91

    Article  Google Scholar 

  • Ceter T, Pinar N, Inceer H, Hayirlioglu-Ayaz S, Yaprak A (2013) The comparative pollen morphology of genera Matricaria L. and Tripleurospermum Sch. Bip. (Asteraceae) in Turkey. Plant Syst Evol 299(5):959–977

    Article  Google Scholar 

  • Durka W (2002) Blüten—und Reproduktionsbiologie. In: Klotz S (ed) Schriftenreihe für Vegetationskunde. Bundesamt für Naturschutz, Bonn

    Google Scholar 

  • Faehnrich B, Nemaz P, Franz C (2013) Self-incompatibility and male sterility in six Matricaria recutita varieties. J Appl Bot Food Qual 86:167–171

    Google Scholar 

  • Funk V, Susanna A, Stuessy T, Bayer R (eds) (2009) Systematics, evolution and biogeography of compositae. International Association for Plant Taxonomy, Vienna

    Google Scholar 

  • Gotelli M, Galati B, Medan D (2010) Structure of the stigma and style in sunflower (Helianthus annus L.). Biocell 34(3):133–138

    CAS  PubMed  Google Scholar 

  • Harling G (1951) Embryological studies in the compositae. Part II. Anthemidae-Chrysantheminae. Acts Horta Bergiani 16:2–56

    Google Scholar 

  • Heine H, Eger H, Franz C, Blüthner W, Hoppe B (2009) Kap. 2.3 Sortenwesen. In: SALUPLANTA, Hrsg. Handbuch des Arznei- und Gewürzpflanzenanbaus, Band 1, Grundlagen des Arznei-und Gewürzpflanzenanbaus I. Bernburg: Verein für Arznei-und Gewürzpflanzen SALUPLANTA e.V, pp 609–640

  • Huang Y, Kao W (2014) Different breeding systems of three varieties of Bidens pilosa in Taiwan. Weed Res 54(2):162–168

    Article  Google Scholar 

  • Kearns C, Inouye D (1993) Techniques for pollination biologists. University Press of Colorado, Colorado

    Google Scholar 

  • Lüttge U, Kluge M, Bauer G (1999) Botanik. 3. Auflage. Wiley-VCH, Weinheim, New York, Chichester, Brisbane, Singapore, Toronto

    Google Scholar 

  • Musial K, Plachno B, Swiatek P, Marciniuk J (2013) Anatomy of ovary and ovule in dandelions (Taraxacum, Asteraceae). Protoplasma 250(3):715–722

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Newcomb W (1973) The development of the embryo sac of sunflower Helianthus annuus L. before and after fertilization. Diss Abstr Int B 34(4):1403–1404

    Google Scholar 

  • Odenbach W (ed) (1997) Biologische Grundlagen der Pflanzenzüchtung. Parey Buchverlag, Berlin

    Google Scholar 

  • Plescher A, Sonnenschein M (2013) Schlussbericht 1: Züchtung einer Qualitätssorte von Kamille mit hoher Ertragsfähigkeit bei maschineller Ernte. www.fah-sinzig.de. Accessed 04 Jun 2014

  • Raina R, Bhandari S, Romesh C, Yashpal S (2013) Strategies to improve poor seed germination in Stevia rebaudiana, a low calorie sweetener. J Med Plants Res 7(24):1793–1799

    Google Scholar 

  • Richards A (1997) Plant breeding systems, 2nd edn. Chapman & Hall, London

    Book  Google Scholar 

  • Schilcher H (1987) Die Kamille. Handbuch für Ärzte, Apotheker und andere Naturwissenschaftler. Wissenschaftliche Verlagsgesellschaft mbH, Stuttgart

    Google Scholar 

  • Stahl-Biskup E, Reichling J (2010) Anatomie und Histologie der Samenpflanzen. Mikroskopisches Praktikum für Pharmazeuten. 3. Auflage. Deutscher Apotheker Verlag, Stuttgart

    Google Scholar 

  • Stoskopf N, Tomes D, Christie B (1993) Plant breeding—theory and practice. Westview Press, Boulder, San Francisco, Oxford

    Google Scholar 

  • Sukno S, Ruso J, Jan C, Melero-Vara J, Fernandez-Martinez J (1999) Interspecific hybridization between sunflower and wild perennial Helianthus species via embryo rescue. Euphytica 106(1):69–78

    Article  Google Scholar 

  • Vetter S, Franz Ch (1998) Samenbildung bei Kreuzungen und Selbstungen mit polyploiden Achillea-Arten (Asteraceae). Z Arznei Gewürzpflanzen 3:11–14

    Google Scholar 

  • Yanming D, Nianjun T, Sumei C, Fadi C, Zhiyong G, Aiping S, Qingshan C (2010) Reproductive barriers in the intergeneric hybridization between Chrysanthemum grandiflorum (Ramat.) Kitam. and Ajania przewalskii Poljak. (Asteraceae). Euphytica 174(1):41–50

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Fachagentur Nachwachsender Rohstoffe (FNR) of the Federal Ministry of Food and Agriculture, Germany (BMELV) under Grant Number 22038911.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Faehnrich.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Faehnrich, B., Kraxner, C., Kummer, S. et al. Pollen tube growth and self incompatibility in Matricaria recutita . Euphytica 206, 357–363 (2015). https://doi.org/10.1007/s10681-015-1478-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10681-015-1478-0

Keywords

Navigation