Skip to main content
Log in

Self-fertility and polyembryony in South American yellow trumpet trees (Handroanthus chrysotrichus and H. ochraceus, Bignoniaceae): a histological study of postpollination events

  • Original Article
  • Published:
Plant Systematics and Evolution Aims and scope Submit manuscript

Abstract

Handroanthus chrysotrichus shows pollination-dependent self-fertility, polyploidy, and adventitious polyembryony, and it is closely related to H. ochraceus, for which apparently conflicting reports of self-incompatibility and apomixis have been published. The present study aims to investigate the polyembryony in these species by means of histological analysis of ovule/seed development in unpollinated, selfed, and crossed pistils/fruits (in H. chrysotrichus only) as well as seed germination experiments. Experimental pollinations were carried out to evaluate breeding systems in the studied populations, and the results indicated self-fertility in both species. Adventitious embryo precursor cells (AEPs) were formed in the ovules of unpollinated, selfed, and crossed pistils. However, unfertilized ovules never develop into seeds, and fertilization/endosperm initiation clearly stimulates the formation of AEPs in pollinated pistils. The inability of AEP-bearing unfertilized ovules to initiate endospermogenesis clearly shows that fertilization is needed for adventitious embryo development. Consequently, formation of AEPs is required but is not sufficient for apomictic reproduction in H. chrysotrichus. Analysis of the positions of multiple embryos in the endosperm indicated that fertilized ovules are able to develop into seeds even in the absence of a zygotic embryo. The development of AEPs in ovules of H. chrysotrichus foregoes the stage in which activation of selfed pistil rejection takes place in H. impetiginosus, a species with late-acting self-incompatibility. Our study supports the hypothesis that the self-fertility in H. chrysotrichus (and perhaps also in H. ochraceus) resulted from the emergence of pseudogamous apomixis, favored by the physiological peculiarities of the late-acting self-incompatibility and possibly related to polyploidy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Figs. 3–10
Figs. 11–18
Figs. 19–24
Figs. 25–30

Similar content being viewed by others

References

  • Amaral MEC (1992) Ecologia floral de dez espécies da tribo Bignoniae (Bignoniaceae) em uma floresta semidecídua no município de Campinas, São Paulo. Dissertation, Universidade Estadual de Campinas

  • Asker SE, Jerling L (1992) Apomixis in plants. CRC, Boca Raton

    Google Scholar 

  • Bawa KS (1974) Breeding systems of tree species of lowland tropical community. Evolution 28:85–92

    Article  Google Scholar 

  • Bawa KS, Webb CJ (1984) Flower, fruit and seed abortion in tropical forest trees: Implications for the evolution of paternal and maternal reproductive patterns. Am J Bot 71:736–751

    Article  Google Scholar 

  • Bertin RI, Sullivan M (1988) Pollen inference and cryptic self-fertility in Campsis radicans. Am J Bot 75:1140–1147

    Article  Google Scholar 

  • Bittencourt NS Jr, Semir J (2004) Pollination biology and breeding system of Zeyheria montana (Bignoniaceae). Plant Syst Evol 247:241–254. doi:10.1007/s00606-004-0142-2

    Google Scholar 

  • Bittencourt NS Jr, Semir J (2005) Late-acting self-incompatibility and other breeding systems in Tabebuia (Bignoniaceae). Int J Plant Sci 166:493–506

    Article  Google Scholar 

  • Bittencourt NS Jr, Semir J (2006) Floral biology and late-acting self-incompatibility in Jacaranda racemosa (Bignoniaceae). Aust J Bot 54:315–324

    Article  Google Scholar 

  • Bittencourt NS Jr, Gibbs PE, Semir J (2003) Histological study of post-pollination events in Spathodea campanulata Beauv. (Bignoniaceae), a species with late-acting self-incompatibility. Ann Bot 91:827–834

    Article  PubMed  Google Scholar 

  • Bullock SH (1985) Breeding systems in flora of tropical deciduous forest in Mexico. Biotropica 17:287–301

    Article  Google Scholar 

  • Carman JG (1997) Asynchronous expression of duplicate genes in angiosperms may cause apomixis, bispory, tetraspory, and polyploidy. Biol J Linn Soc 61:51–94

    Article  Google Scholar 

  • Costa ME, Sampaio DS, Paoli AAS, Leite SCAL (2004) Poliembrionia e aspectos da embriogênese em Tabebuia ochracea (Cham.) Standley (Bignoniaceae). Rev Bras Bot 27:395–406

    Article  Google Scholar 

  • de Nettancourt D (2001) Incompatibility and incongruity in wild and cultivated plants, 2nd edn. Springer, Berlin

    Google Scholar 

  • Dutra JCS, Machado VLL (2001) Entomofauna visitante de Stenolobium stans (Juss.) Seem (Bignoniaceae), durante seu período de floração. Neotropical Entomol 30:43–53

    Google Scholar 

  • Garcia R, Asins MJ, Foener J, Carbonell EA (1999) Genetic analysis in Citrus and Poncirus by genetic markers. Theor Appl Genet 99:511–518

    Article  CAS  Google Scholar 

  • Gentry AH (1974) Coevolutionary patterns in Central American Bibnoniaceae. Ann Missouri Bot Gard 61:728–759

    Article  Google Scholar 

  • Gentry AH (1992) Bignoniaceae—Part II (Tribe Tecomeae). Flora Neotropica: Monograph 25 (II). Organization for Flora Neotropica, New York

    Google Scholar 

  • Gibbs PE, Bianchi M (1993) Post-pollination events in species of Chorisia (Bombacaceae) and Tabebuia (Bignoniaceae) with Late-acting self-incompatibility. Bot Acta 106:64–71

    Google Scholar 

  • Gibbs PE, Bianchi M (1999) Does late-acting self-incompatibility (LSI) show family clustering? Two more species of Bignoniaceae with LSI: Dolichandra cynanchoides and Tabebuia nodosa. Ann Bot 84:449–457

    Article  Google Scholar 

  • Gobatto-Rodrigues AA, Stort MN (1992) Biologia floral e reprodução de Pyrostegia venusta (Ker-Gawl) Miers (Bignoniaceae). Rev Bras Bot 15:37–41

    Google Scholar 

  • Goldblatt P, Gentry AH (1979) Cytology of Bignoniaceae. Bot Not 132:475–482

    Google Scholar 

  • Grose SO, Olmstead RG (2007) Taxonomic revisions in the polyphyletic genus Tabebuia s. l. (Bignoniaceae). Syst Bot 32:660–670

    Article  Google Scholar 

  • Guimarães E, Stasi LC, Maimoni-Rodella RCS (2008) Pollination biology of Jacaranda oxyphylla with an emphasis on staminode function. Ann Bot 102:699–711

    Article  PubMed  Google Scholar 

  • Hörandl E (2009) The evolution of self-fertility in apomictic plants. Sex Plant Reprod (in press). doi:101007/s00497-0090122-3

  • James EA, Knox RB (1993) Reproductive Biology of the Australian species of the genus Pandorea (Bignoniaceae). Aust J Bot 41:611–626

    Article  Google Scholar 

  • Johansen DA (1940) Plant microtechnique. McGraw-Hill, New York

    Google Scholar 

  • Johansen DA (1950) Plant embryology. Chronica Botanica, Waltham

    Google Scholar 

  • Johri BM, Ambegaokar KB, Srivastava PS (1992) Comparative embryology of angiosperms, vol 2. Springer, Berlin

    Google Scholar 

  • Klekowski EJ Jr (1988) Mutation, developmental selection, and plant evolution. Columbia University Press, New York

    Google Scholar 

  • Koltunow AM, Grossniklaus U (2003) Apomixis: a developmental perspective. Annu Rev Plant Biol 54:547–574. doi:10.1146/annurev.arplant.54.110901.160842

    Article  CAS  PubMed  Google Scholar 

  • Lakshmanan KK, Ambegaokar KB (1984) Polyembryony. In: Johri BM (ed) Embryology of angiosperms. Springer, Berlin, pp 445–474

    Google Scholar 

  • Lorenzi H (2002) Árvores brasileiras, vol. 1, 4th edn. Plantarum, Nova Odessa

    Google Scholar 

  • Maurizon J (1935) Etwas über die Embryologie der Bignoniaceen. Bot Not 1935:60–77

    Google Scholar 

  • Mendes-da-Glória FJ, Mourão Filho FAA, Appezato-da-Glória B (2001) Morfologia de embriões nucelares de laranja (Citrus sinensis L.) Osbeck. Acta Bot Bras 15:17–25

    Article  Google Scholar 

  • Mendes-Rodrigues C, Carmo-Oliveira R, Talavera S, Arista M, Ortiz PL, Oliveira PE (2005) Polyembryony and apomixis in Eriotheca pubescens (Malvaceae–Bombacoideae). Plant Biol 7:533–540. doi:10.1055/s-2005-865852

    Article  CAS  PubMed  Google Scholar 

  • Milet-Pinheiro P, Schlindwein C (2009) Pollination in Jacaranda rugosa (Bignoniaceae): euglossine pollinators, nectar robbers and low fruit set. Plant Biol 11:131–141. doi:10.111/j.1438-8677.2008.00118.x

    Article  CAS  PubMed  Google Scholar 

  • O’Brien TP, Feder N, McCully ME (1964) Polychromatic staining of plant cell walls by Toluidine Blue O. Protoplasma 59:367–373

    Google Scholar 

  • Oliveira PE, Gibbs PE, Barbosa AA, Talavera S (1992) Contrasting breeding systems in two Eriotheca (Bombacaceae) species of Brazilian cerrados. Plant Syst Evol 179:207–219

    Article  Google Scholar 

  • Olmstead RG, Zjhra ML, Lohmann LG, Grose SO, Eckert AJ (2009) A molecular phylogeny and classification of Bignoniaceae. Am J Bot 96:1731–1743. doi:10.3732/ajb.0900004

    Article  CAS  Google Scholar 

  • Petersen C, Brown JH, Kodric-Brown A (1982) An experimental study of floral display and fruit set in Chilopsis linearis (Bignoniaceae). Oecologia 55:7–11

    Article  Google Scholar 

  • Piazzano M (1998) Números cromosómicos em Bignoniaceae de Argentina. Kurtziana 26:179–189

    Google Scholar 

  • Polatto LP, Alves VV Jr (2009) Sistema reprodutivo de Sparatosperma leucanthum (Vell.) K. Schum. (Bignoniaceae). Rev Árvore 33:289–296

    Article  Google Scholar 

  • Richards AJ (1997) Plant breeding systems. Chapman and Hall, London

    Google Scholar 

  • Ruzin SE (1999) Plant microtechnique and microscopy. Oxford University Press, New York

    Google Scholar 

  • Salomão AN, Allem AC (2001) Polyembryony in angiospermous trees of the Brazilian cerrado and caatinga vegetation. Acta Bot Bras 15:369–378

    Article  Google Scholar 

  • Sampaio DS, Costa ME, Paoli AAS (2007) Ontogenia da semente de Tabebuia ochracea (Cham.) Standl. (Bignoniaceae). Rev Bras Bot 30:289–302

    Article  Google Scholar 

  • Seavey SR, Bawa KS (1986) Late-acting self-incompatibility in angiosperms. Bot Rev 52:195–219

    Article  Google Scholar 

  • Shivaramiah G (1998) Endosperm development in Bignoniaceae. Phytomorphology 48:45–50

    Google Scholar 

  • Singh J, Chauhan SVS (1996) Morphological changes in the stigma of seasonaly transient sterile Tecoma stans L. Phytomorphology 46:1–7

    Google Scholar 

  • Souza LA, Iwazaki MC, Moscheta IS (2005) Morphology of the pericarp and seed of Tabebuia chrysotricha (Mart. ex DC.) Standl. (Bignoniaceae). Braz Arch Biol Technol 48:407–418

    Google Scholar 

  • Srithongchauay T, Bumrungsri S, Sripao-raya E (2008) The pollination ecology of the late-successional tree, Oroxylum indicum (Bignoniaceae) in Thailand. J Trop Ecol 24:477–484. doi:10.1017/S026646740800521X

    Google Scholar 

  • Stephenson AG, Thomas WW (1977) Diurnal and nocturnal pollination of Catalpa speciosa (Bignoniaceae). Syst Bot 2:191–198

    Article  Google Scholar 

  • Vieira MF, Meira RMSA, Queiroz LP, Meira Neto JAA (1992) Polinização e reprodução de Jacaranda caroba (Vell.) DC. (Bignoniaceae) em área de cerrado do sudeste brasileiro. An 8th Congr SBPC 13–19

  • Vikas, Gautam M, Tandon R, Ram HYM (2009) Pollination ecology and breeding system of Oroxylum indicum (Bignoniaceae) in the foothills of the Western Himalaya. J Trop Ecol 25:93–96. doi:10.1017/S0266467408005634

    Article  Google Scholar 

  • Zar JH (1999) Biostatistical analysis, 4th edn. Prentice Hall, New Jersey

    Google Scholar 

Download references

Acknowledgments

We are grateful to Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) for financial support, and for a fellowship granted to the second author.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nelson Sabino Bittencourt Jr..

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bittencourt, N.S., Moraes, C.I.G. Self-fertility and polyembryony in South American yellow trumpet trees (Handroanthus chrysotrichus and H. ochraceus, Bignoniaceae): a histological study of postpollination events. Plant Syst Evol 288, 59–76 (2010). https://doi.org/10.1007/s00606-010-0313-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00606-010-0313-2

Keywords

Navigation