Skip to main content

Advertisement

Log in

Proteomic profile of Citrus grandis roots under long-term boron-deficiency revealed by iTRAQ

  • Original Article
  • Published:
Trees Aims and scope Submit manuscript

Abstract

Key message

Eighty-six differentially abundant proteins were identified in Citrus grandis roots in response to boron-deficiency using the iTRAQ technique and possible mechanism underlying boron-deficiency tolerance of citrus plants was identified.

Abstract

Boron (B) is an essential element for plant growth and development and adequate B supply is an important determinant of good quality and high yield of crops. B-deficiency is a worldwide problem in agricultural production including citrus. However, little is known about the molecular mechanism of plant tolerance to B-deficiency. Using the iTRAQ technique, 86 differentially abundant proteins were identified from B-deficient Citrus grandis roots. The adaptive strategy of C. grandis roots under B-deficiency was summarized as follows: (1) enhancement of alternative splicing of mRNA and DNA methylation; (2) up-regulation of post-translation modification (PTM) and turnover of proteins; (3) reinforcement of cellular transport; (4) enhancement of antioxidant system and signal transduction. In general, these results increase our understanding of molecular mechanisms underlining the resistance of citrus plant under B-deficiency. Further studies should focus on how do roots perceive B deficiency in the rhizosphere and which pathway or proteins react to this adverse condition in the first place and then stimulates the downstream responses in Citrus plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ali AHN, Jarvis BC (1988) Effects of auxin and boron on nucleic acid metabolism and cell division during adventitious root regeneration. New Phytol 108:383–391

    Article  CAS  Google Scholar 

  • Alvarez S, Berla BM, Sheffield J, Cahoon RE, Jez JM, Hicks LM (2009) Comprehensive analysis of the Brassica juncea root proteome in response to cadmium exposure by complementary proteomic approaches. Proteomics 9(9):2419–2431

    Article  CAS  PubMed  Google Scholar 

  • Alves M, Francisco R, Martins I, Ricardo CPP (2006) Analysis of Lupinus albus leaf apoplastic proteins in response to boron deficiency. Plant Soil 279:1–11

    Article  CAS  Google Scholar 

  • Alves M, Moes S, Jenö P, Pinheiro C, Passarinho J, Ricardo CP (2011) The analysis of Lupinus albus root proteome revealed cytoskeleton altered features due to long-term boron deficiency. J Proteomics 74:1351–1363

    Article  CAS  PubMed  Google Scholar 

  • Besong BE, Lawanson AO (1991) Boron stress and mitochondrial quinone accumulation in Zea mays seedlings. J Plant Physiol 138:80–84

    Article  CAS  Google Scholar 

  • Byers DM, Gong H (2007) Acyl carrier protein: structure-function relationships in a conserved multifunctional protein family. Biochem Cell Biol 85(6):649–662

    Article  CAS  PubMed  Google Scholar 

  • Cakmak L, Römhekd V (1997) Boron deficiency-induced impairments of cellular functions in plants. Plant Soil 193:71–83

    Article  CAS  Google Scholar 

  • Camacho-Cristóbal JJ, González-Fontes A (2007) Boron deficiency decreases plasmalemma H+-ATPase expression and nitrate uptake, and promotes ammonium assimilation into asparagine in tobacco roots. Planta 226:443–451

    Article  PubMed  Google Scholar 

  • Cara FA, Sánchez E, Ruiz JM, Romero L (2002) Is phenol oxidation responsible for the short-term effects of boron deficiency on plasma-membrane permeability and function in squash roots? Plant Physiol Biochem 40:853–858

    Article  CAS  Google Scholar 

  • Chan DI, Vogel HJ (2010) Current understanding of fatty acid biosynthesis and the acyl carrier protein. Biochem J 430(3):559

    Article  CAS  Google Scholar 

  • Chapman HD (1968) The mineral nutrition of Citrus. In: Reuther W, Webber HJ, Batchelor LD (eds) The citrus industry, vol 2. Division of agricultural sciences, University of California, CA, pp 127–189

  • Chaumont F, Barrieu F, Jung R, Chrispeels MJ (2000) Plasma membrane intrinsic proteins from maize cluster in two sequence subgroups with differential aquaporin activity. Plant Physiol 122(4):1025–1034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen LS, Han S, Qi Y, Yang LT (2012) Boron stresses and tolerance in citrus. Afr J Biotechnol 11:5961–5969

    CAS  Google Scholar 

  • Choi CS, Sano H (2007) Abiotic-stress induces demethylation and transcriptional activation of a gene encoding a glycerophosphodiesterase-like protein in tobacco plants. Mol Genet Genome 277:589–600

    Article  CAS  Google Scholar 

  • Christensen AH, Sharrock RA, Quail PH (1992) Maize polyubiquitin genes: structure, thermal perturbation of expression and transcript splicing, and promoter activity following transfer to protoplasts by electroporation. Plant Mol Biol 18:675–689

    Article  CAS  PubMed  Google Scholar 

  • Cui G, Nan B, Hu J, Wang Y, Jin C, Xia B (2006) Identification and solution structures of a single domain biotin/lipoyl attachment protein from Bacillus subtilis. J Biol Chem 281(29):20598–20607

    Article  CAS  PubMed  Google Scholar 

  • Dell B, Huang L (1997) Physiologic al response of plants to low boron. Plant Soil 193:103–120

    Article  CAS  Google Scholar 

  • Dowen RH, Pelizzola M, Schmitz RJ, Lister R, Dowen JM, Nery JR, Dixon JE, Ecker JR (2012) Widespread dynamic DNA methylation in response to biotic stress. Proc Natl Acad Sci USA 109(32):E2183–E2191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • El-Shintinawi F (1999) Structural and functional damage caused by boron deficiency in sunflower leaves. Photosynthetica 36:565–573

    Article  Google Scholar 

  • Garbarino JE, Rockhold DR, Belknap WR (1992) Expression of stress-responsive ubiquitin genes in potato tubers. Plant Mol Biol 20:235–244

    Article  CAS  PubMed  Google Scholar 

  • Genschik P, Parmentier Y, Durr A, Marbach J, Criqui MC, Jamet E, Fleck J (1992) Ubiquitin genes are differentially regulated in protoplast-derived cultures of Nicotiana sylvestris and in response to various stresses. Plant Mol Biol 20:897–910

    Article  CAS  PubMed  Google Scholar 

  • González-Fontes A, Rexach J, Quiles-Pando C, Herrera-Rodríguez MB, Camacho-Cristóbal JJ, Navarro-Gochiacoa MT (2013) Transcription factors as potential participants in the signal transduction pathway of boron deficiency. Plant Signal Behav 8(11):e2611

    Article  Google Scholar 

  • Han S, Chen LS, Jiang HX, Smith BR, Yang LT (2008) Boron deficiency decreases growth and photosynthesis, and increases starch and hexoses in leaves of citrus seedlings. J Plant Physiol 165:1331–1341

    Article  CAS  PubMed  Google Scholar 

  • Han S, Tang N, Jiang H, Yang L, Li Y, Chen L (2009) CO2 assimilation, photosystem II photochemistry, carbohydrate metabolism and antioxidant system of citrus leaves in response to boron stress. Plant Sci 176:143–153

    Article  CAS  Google Scholar 

  • Hossain MA, da Silva JAT, Fujita M (2011) Glyoxalase system and reactive oxygen species detoxification system in plant abiotic stress response and tolerance: an intimate relationship. In: Shanker AK, Venkateswarlu B (eds) Abiotic stress in plants-mechanisms and adaptations. INTECH-Open Access Publisher, Rijeka, pp 235–266

    Google Scholar 

  • Huang JH, Cai ZJ, Wen SX, Guo P, Ye X, Lin GZ, Chen LS (2014) Effects of boron toxicity on root and leaf anatomy in two Citrus species differing in boron tolerance. Trees-Struct Funct 28:1653–1666

    Article  CAS  Google Scholar 

  • Jiang CC, Wang YH, Liu GD, Xia Y, Peng S, Zhong BL, Zeng QL (2009) Effect of boron on the leaf etiolation and fruit drop of Newhall Navel orange in southern Jiangxi. Plant Nutr Fert Sci 15:611–656

    Google Scholar 

  • Jiang HX, Yang LT, Qi YP, Lu YB, Huang ZR, Chen LS (2015) Root iTRAQ protein profile analysis of two citrus species differing in aluminum-tolerance in response to long-term aluminum-toxicity. BMC Genom 16:949

    Article  Google Scholar 

  • Kobayashi M, Matoh T, Azuma J (1996) Two chains of rhamnogalacturonan II are cross-linked by borate-diol ester bonds in higher plant cell walls. Plant Physiol 110:1017–1020

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kobayashi M, Mutoh T, Matoh T (2004) Boron nutrition of cultured tobacco BY-2 cells. IV. Genes induced under low boron supply. J Exp Bot 55:1441–1443

    Article  CAS  PubMed  Google Scholar 

  • Kofler M, Motzny K, Freund C (2005) GYF domain proteomics reveals interaction sites in known and novel target proteins. Mol Cell Proteomics 4(11):1797–1811

    Article  CAS  PubMed  Google Scholar 

  • Komander D (2009) The emerging complexity of protein ubiquitination. Biochem Soc Trans 37:937–953

    Article  CAS  PubMed  Google Scholar 

  • Konsaeng S, Dell B, Rerkasen B (2005) A survey of woody tropical species for boron retranslocation. Plant Prod Sci 8:338–341

    Article  CAS  Google Scholar 

  • Krüger J, Thomas CM, Golstein C, Dixon MS, Smoker M, Tang S, Mulder L (2002) Jones JD (2002) A tomato cysteine protease required for Cf-2-dependent disease resistance and suppression of autonecrosis. Science 296(5568):744–747

    Article  PubMed  Google Scholar 

  • Kumar G, Srivastava N (2011) Genotoxic effects of two commonly used food additives of boric acid and sunset yellow in root meristems of Trigonella foenum-graecum. Iran J Environ Health Sci 8(4):361–366

    CAS  Google Scholar 

  • Labra M, Ghiani A, Citterio S, Sgorbati S, Sala F, Vannini C, Ruffini-Castiglione M, Bracale M (2002) Analysis of cytosine methylation pattern in response to water deficit in pea root tips. Plant Biol 4:694–699

    Article  CAS  Google Scholar 

  • Liu GD, Dong XC, Liu LC, Wu LS, Peng SA, Jiang CC (2015) Metabolic profiling reveals altered pattern of central metabolism in navel orange plants as a result of boron deficiency. Physiol Plant 153(4):513–524

    Article  CAS  PubMed  Google Scholar 

  • Lyzenga WJ, Stone SL (2012) Abiotic stress tolerance mediated by protein ubiquitination. J Exp Bot 63(2):599–616

    Article  CAS  PubMed  Google Scholar 

  • Milla MAR, Maurer A, Rodriguez Huete A, Gustafson JP (2003) Glutathione peroxidase genes in Arabidopsis are ubiquitous and regulated by abiotic stresses through diverse signaling pathways. Plant J 36(5):602–615

    Article  Google Scholar 

  • Miwa K, Takano J, Fujiwara T (2006) Improvement of seed yields under boron-limiting conditions through overexpression of BOR1, a boron transporter for xylem loading, in Arabidopsis thaliana. Plant J 46:1084–1091

    Article  CAS  PubMed  Google Scholar 

  • Mustafiz A, Singh AK, Pareek A, Sopory SK, Singla-Pareek SL (2011) Genome-wide analysis of rice and Arabidopsis identifies two glyoxalase genes that are highly expressed in abiotic stresses. Funct Integr Genomics 11(2):293–305

    Article  CAS  PubMed  Google Scholar 

  • Ndong C, Anzellotti D, Ibrahim RK, Huner NP, Sarhan F (2003) Daphnetin methylation by a novel O-methyltransferase is associated with cold acclimation and photosystem II excitation pressure in rye. J Biol Chem 278(9):6854–6861

    Article  CAS  PubMed  Google Scholar 

  • O’Neill MA, Warrenfeltz D, Kates K, Pellerin P, Doco T, Darill AG, Albersheim P (1996) Rhamnogalacturonan-II, a pectic polysaccharide in the walls of growing plant cell, forms a dimer that is covalently cross-linked by a borate ester. J Biol Chem 271:22923–22930

    Article  PubMed  Google Scholar 

  • Pradet-Balade B, Boulme F, Beug H, Mullner EW, Garcia-Sanz JA (2001) Translation control: bridging the gap between genomics and proteomics? Trends Biochem Sci 26:225–229

    Article  CAS  PubMed  Google Scholar 

  • Quiles-Pando C, Rexach J, Navarro-Gochicoa MT, Camacho-Cristóbal JJ, Herrera-Rodríguez MB, González-Fontes A (2013) Boron deficiency increases the levels of cytosolic Ca(2+) and expression of Ca(2+)-related genes in Arabidopsis thaliana roots. Plant Physiol Biochem 65:55–60

    Article  CAS  PubMed  Google Scholar 

  • Reguera M, Bonilla I, Bolaños L (2010) Boron deficiency results in induction of pathogenesis-related proteins from the PR-10 family during the legume-rhizobia interaction. J Plant Physiol 167:623–632

    Article  Google Scholar 

  • Ross PL, Huang Y, Marchese JN, Williamson B, Parker K, Hattan S, Khainovski N, Pillai S, Dey S, Daniels S, Purkayastha S, Juhasz P, Martin S, Bartlet-Jones M, He F, Jacobson A, Pappin DJ (2004) Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents. Mol Cell Proteomics 3:1154–1169

    Article  CAS  PubMed  Google Scholar 

  • Ryden P, Sugimoto-Shirasu K, Smith AC, Findlay K, Reiter WD, McCann MC (2003) Tensile properties of Arabidopsis cell walls depend on both a xyloglucan cross-linked microfibrillar network and rhamnogalacturonan II-borate complexes. Plant Physiol 132:1033–1040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sang W, Huang ZR, Qi YP, Yang LT, Guo P, Chen LS (2015) An investigation of boron-toxicity in leaves of two citrus species differing in boron-tolerance using comparative proteomics. J Proteomics 123:128–146

    Article  CAS  PubMed  Google Scholar 

  • Shorrocks VM (1997) The occurrence and correction of boron deficiency. Plant Soil 193:121–148

    Article  CAS  Google Scholar 

  • Singer AC, Crowley DE, Thompson IP (2003) Secondary plant metabolites in phytoremediation and biotransformation. Trends Biotechnol 21(3):123–130

    Article  CAS  PubMed  Google Scholar 

  • Sun CW, Callis J (1997) Independent modulation of Arabidopsis thaliana polyubiquitin mRNAs in different organs and in response to environmental changes. Plant J 11:1017–1027

    Article  CAS  PubMed  Google Scholar 

  • Tajima T, Yamaguchi A, Matsushima S, Satoh M, Hayasaka S, Yoshimatsu K, Shioi Y (2011) Biochemical and molecular characterization of senescence-related cysteine protease-cystatin complex from spinach leaf. Physiol Plant 141(2):97–116

    Article  CAS  PubMed  Google Scholar 

  • Takano J, Wada M, Ludewig U, Schaaf G, von Wirén N, Fujiwara T (2006) The Arabidopsis major intrinsic protein NIP5;1 is essential for efficient boron uptake and plant development under boron limitation. Plant Cell 18:1498–1509

    Article  PubMed  PubMed Central  Google Scholar 

  • Tanaka M, Fujiwara T (2008) Physiological roles and transport mechanisms of boron: perspectives from plants. Eur J Physiol 456:671–677

    Article  CAS  Google Scholar 

  • Tewari RK, Kumar P, Sharma PN (2010) Morphology and oxidative physiology of boron-deficient mulberry plants. Tree Physiol 30:68–77

    Article  CAS  PubMed  Google Scholar 

  • van der Linde K, Hemetsberger C, Kastner C, Kaschani F, van der Hoorn RA, Kumlehn J, Doehlemann G (2012) A maize cystatin suppresses host immunity by inhibiting apoplastic cysteine proteases. Plant Cell 24(3):1285–1300

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang ZF, Wang ZH, Shi L, Wang LJ, Xu FS (2010) Proteomic alterations of Brassica napus root in response to boron deficiency. Plant Mol Biol 74:265–278

    Article  CAS  PubMed  Google Scholar 

  • Wang ZH, Wang ZF, Chen SS, Shi L, Xu FS (2011) Proteomics reveals the adaptability mechanism of Brassica napus to short-term boron deprivation. Plant Soil 347:195–210

    Article  CAS  Google Scholar 

  • Warington K (1923) The effect of boric acid and borax on the broad bean and certain other plants. Ann Bot 27:629–672

    Google Scholar 

  • Washburn MP, Koller A, Oshiro G, Ulaszek RR, Plouffe D, Deciu C, Winzeler E, Yates JR (2003) Protein pathway and complex clustering of correlated mRNA and protein expression analyses in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 100:3107–3112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wimmer MA, Eichert T (2013) Review: mechanisms for boron deficiency-mediated changes in plant water relations. Plant Sci 203–204:25–32

    Article  PubMed  Google Scholar 

  • Yang LT, Jiang HX, Tang N, Chen LS (2011) Mechanisms of aluminum-tolerance in two species of citrus: secretion of organic acid anions and immobilization of aluminum by phosphorus in roots. Plant Sci 180:521–530

    Article  CAS  PubMed  Google Scholar 

  • Yang GH, Yang LT, Jiang HX, Wang P, Chen LS (2012) Physiological impacts of magnesium-deficiency in Citrus seedlings: photosynthesis, antioxidant system and carbohydrates. Trees-Struct Funct 26(4):1237–1250

    Article  CAS  Google Scholar 

  • Yang LT, Qi YP, Lu YB, Guo P, Sang W, Feng F, Zhang HX, Chen LS (2013) iTRAQ protein profile analysis of Citrus sinensis roots in response to long-term boron-deficiency. Proteomics 93:179–206

    Article  CAS  PubMed  Google Scholar 

  • Zemach A, Grafi G (2007) Methyl-CpG-binding domain proteins in plants: interpreters of DNA methylation. Trends Plant Sci 12(2):80–85

    Article  CAS  PubMed  Google Scholar 

  • Zhou C, Qi Y, You X, Yang L, Guo P, Ye X, Zhou XX, Ke FJ, Chen LS (2013) Leaf cDNA-AFLP analysis of two citrus species differing in manganese tolerance in response to long-term manganese-toxicity. BMC Genom 14(1):621

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was financially supported by the earmarked fund for China Agriculture Research System (No. CARS-27), National Natural Science Grant of China (No. 31301740) and the Provincial Natural Science Grant of Fujian, China (No. 2014J05033). The funding authorities had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li-Song Chen.

Ethics declarations

Conflict of interest

No conflicts of interest declared.

Additional information

Communicated by E. Magel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, LT., Lu, YB., Zhang, Y. et al. Proteomic profile of Citrus grandis roots under long-term boron-deficiency revealed by iTRAQ. Trees 30, 1057–1071 (2016). https://doi.org/10.1007/s00468-015-1344-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00468-015-1344-7

Keywords

Navigation