Skip to main content
Log in

Physiological impacts of magnesium-deficiency in Citrus seedlings: photosynthesis, antioxidant system and carbohydrates

  • Original Paper
  • Published:
Trees Aims and scope Submit manuscript

Abstract

Magnesium (Mg)-deficiency affects productivity and quality in agriculture, yet at a physiological level it is not well understood. Citrus grandis and Citrus sinensis seedlings were irrigated for 12 weeks with 0, 50, 500 or 2,000 μM MgSO4. Thereafter, Mg-deficiency-induced changes in photosynthesis, antioxidant system and carbohydrates were investigated. Mg-deficiency affected CO2 assimilation more in C. grandis leaves than in C. sinensis ones, but Mg-deficiency-induced accumulation of sugars was not higher in the former except for sucrose. Mg-deficiency-induced photoinhibitory impairment occurring on the whole photosynthetic electron transport chain was more severe in C. grandis leaves than in C. sinensis ones. Mg-deficient leaves had higher or similar activities of antioxidant enzymes and contents of antioxidant metabolites except for catalase (CAT) activity and reduced glutathione (GSH) content. However, Mg-deficiency increased leaf malondialdehyde (MDA) content. In conclusion, the greater decrease in CO2 assimilation in Mg-deficient C. grandis leaves may be caused by the greater decrease in the photosynthetic electron transport capacity. Mg-deficiency-induced up-regulation in leaf antioxidant system does not provide enough protection to Mg-deficient leaves against the oxidative damage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Cakmak I (1994) Activity of ascorbate-dependent H2O2-scavenging enzymes and leaf chlorosis are enhanced in magnesium- and potassium-deficient leaves, but not in phosphorus-deficient leaves. J Exp Bot 45:1259–1266

    Article  CAS  Google Scholar 

  • Cakmak I, Kirkby EA (2008) Role of magnesium in carbon partitioning and alleviating photooxidative damage. Physiol Plant 133:692–704

    Article  PubMed  CAS  Google Scholar 

  • Cakmak I, Marschner H (1992) Magnesium deficiency and high light intensity enhance activities of superoxide dismutase, ascorbate peroxidase, and glutathione reductase in bean leaves. Plant Physiol 98:1222–1227

    Article  PubMed  CAS  Google Scholar 

  • Cakmak I, Hengeler C, Marschner H (1994a) Partitioning of shoot and root dry matter and carbohydrates in bean plants suffering from phosphorus, potassium and magnesium deficiency. J Exp Bot 45:1245–1250

    Article  CAS  Google Scholar 

  • Cakmak I, Hengeler C, Marschner H (1994b) Changes in phloem export of sucrose in leaves in response to phosphorus, potassium and magnesium deficiency in bean plants. J Exp Bot 45:1251–1257

    Article  CAS  Google Scholar 

  • Candan N, Tarhan L (2003) Relationship among chlorophyll-carotenoid content, antioxidant enzyme activities and lipid peroxidation levels by Mg2+ deficiency in the Mentha pulegium leaves. Plant Physiol Biochem 41:35–40

    Article  CAS  Google Scholar 

  • Chapman HD (1968) The mineral nutrition of citrus. In: Reuther W, Webber HJ, Batchelor LD (eds) The Citrus industry, vol 2. Division of Agricultural Sciences, University of California, CA, pp 127–189

    Google Scholar 

  • Chen LS, Cheng L (2003) Both xanthophyll cycle-dependent thermal dissipation and the antioxidant system are up-regulated in grape (Vitis labrusca L. cv. Concord) leaves in response to N limitation. J Exp Bot 54:2165–2175

    Article  PubMed  CAS  Google Scholar 

  • Chen LS, Li P, Cheng L (2008) Effects of high temperature coupled with high light on the balance between photooxidation and photoprotection in the sun-exposed peel of apple. Planta 228:745–756

    Article  PubMed  CAS  Google Scholar 

  • Chou TS, Chao YY, Huang WD, Hong CY, Kao CH (2011) Effect of magnesium deficiency on antioxidant status and cadmium toxicity in rice seedlings. J Plant Physiol 168:1021–1030

    Article  PubMed  CAS  Google Scholar 

  • Demmig-Adams B, Adams WW III (1996) The role of xanthophyll cycle carotenoids in the protection of photosynthesis. Trends Plant Sci 1:21–26

    Article  Google Scholar 

  • Fischer ES (1997) Photosynthetic irradiance response curves of Phaseolus vulgaris under moderate or severe magnesium deficiency. Photosynthetica 33:385–390

    CAS  Google Scholar 

  • Fischer ES, Bremer E (1993) Influence of magnesium deficiency on rates of leaf expansion, starch and sucrose accumulation and net assimilation in Phaseolus vulgaris. Physiol Plant 89:271–276

    Article  CAS  Google Scholar 

  • Fischer ES, Lohaus G, Heineke D, Heldt HW (1998) Magnesium deficiency results in accumulation of carbohydrates and amino acids in source and sink leaves of spinach. Physiol Plant 102:16–20

    Article  CAS  Google Scholar 

  • Force L, Critchley C, van Rensen JJS (2003) New fluorescence parameters for monitoring photosynthesis in plants. 1. The effect of illumination on the fluorescence parameters of the JIP-test. Photosynth Res 78:17–33

    Article  PubMed  CAS  Google Scholar 

  • Giannopolitis CN, Rice SK (1977) Superoxide dismutase: occurrence in higher plants. Plant Physiol 59:309–314

    Article  PubMed  CAS  Google Scholar 

  • Gossett DR, Millhollon EP, Lucas MC (1994) Antioxidant responses to NaCl stress in salt-tolerant and salt-sensitive cultivars of cotton. Crop Sci 34:706–714

    Article  CAS  Google Scholar 

  • Griffith OW (1980) Determination of glutathione and glutathione disulfide using glutathione reductase and 2-vinylpyridine. Anal Biochem 106:207–212

    Article  PubMed  CAS  Google Scholar 

  • Hakala M, Tuominen I, Keränen M, Tyystjärvi T, Tyystjärvi E (2005) Evidence for the role of the oxygen-evolving manganese complex in photoinhibition of photosystem II. Biochim Biophys Acta 1706:68–80

    Article  PubMed  CAS  Google Scholar 

  • Han S, Chen LS, Jiang HX, Smith BR, Yang LT, Xie CY (2008) Boron deficiency decreases growth and photosynthesis, and increases starch and hexoses in leaves of citrus seedlings. J Plant Physiol 165:1331–1341

    Article  PubMed  CAS  Google Scholar 

  • Han S, Tang N, Jiang HX, Yang LT, Li Y, Chen LS (2009) CO2 assimilation, photosystem II photochemistry, carbohydrate metabolism and antioxidant system of citrus leaves in response to boron stress. Plant Sci 176:143–153

    Article  CAS  Google Scholar 

  • Hariadi Y, Shabala S (2004) Screening broad beans (Vicia faba) for magnesium deficiency. II. Photosynthetic performance and leaf bioelectrical responses. Funct Plant Biol 31:539–549

    Article  CAS  Google Scholar 

  • Hermans C, Verbruggen N (2005) Physiological characterization of Mg deficiency in Arabidopsis thaliana. J Exp Bot 56:2153–2161

    Article  PubMed  CAS  Google Scholar 

  • Hermans C, Johnson GN, Strasser RJ, Verbruggen N (2004) Physiological characterisation of magnesium deficiency in sugar beet: acclimation to low magnesium differentially affects photosystems I and II. Planta 220:344–355

    Article  PubMed  CAS  Google Scholar 

  • Hermans C, Bourgis F, Faucher M, Strasser RJ, Delrot S, Verbruggen N (2005) Magnesium deficiency in sugar beets alters sugar partitioning and phloem loading in young mature leaves. Planta 220:541–549

    Article  PubMed  CAS  Google Scholar 

  • Hodges DM, DeLong JM, Forney CF, Prange RK (1999) Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta 207:604–611

    Article  CAS  Google Scholar 

  • Jiang HX, Chen LS, Zheng JG, Han S, Tang N, Smith BR (2008) Aluminum-induced effects on photosystem II photochemistry in Citrus leaves assessed by the chlorophyll a fluorescence transient. Tree Physiol 28:1863–1871

    Article  PubMed  CAS  Google Scholar 

  • Laing W, Greer D, Sun O, Beets P, Lowe A, Payn T (2000) Physiological impacts of Mg deficiency in Pinus radiata: growth and photosynthesis. New Phytol 146:47–57

    Article  CAS  Google Scholar 

  • Lasa B, Frechilla S, Aleu M, González-Moro B, Lamsfus C, Aparicio-Tejo PM (2000) Effects of low and high levels of magnesium on the response of sunflower plants grown with ammonium and nitrate. Plant Soil 225:167–174

    Article  CAS  Google Scholar 

  • Law MY, Charles SA, Halliwell B (1983) Glutathione and ascorbic acid in spinach (Spinacia oleracea) chloroplasts: the effect of hydrogen peroxide and of paraquat. Biochem J 210:899–903

    PubMed  CAS  Google Scholar 

  • Li Y, Liu XH, Zhuang WM (2001) The effect of magnesium deficiency on photosynthesis of longan (Dimocarpus longan Lour.) seedlings. Acta Hort Sin 28:101–106

    Google Scholar 

  • Li J, Xie ZC, Xie WL, Wu XM, Shi Q (2011) Relationship between leaf vein splitting and mineral nutrition of Citrus. Acta Hort Sin 38:425–433

    CAS  Google Scholar 

  • Lichtenthaler HK (1987) Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Methods Enzymol 148:350–382

    Article  CAS  Google Scholar 

  • Lin ZH, Chen LS, Chen RB, Zhang FZ, Jiang HX, Tang N (2009) CO2 assimilation, ribulose-1,5-bisphosphate carboxylase/oxygenase, carbohydrates and photosynthetic electron transport probed by the JIP-test, of tea leaves in response to phosphorus supply. BMC Plant Biol 9:43

    Article  PubMed  Google Scholar 

  • Ling LL, Peng LZ, Cao L, Jiang CL, Chun CP, Zhang GY, Wang ZX (2009) Effect of magnesium deficiency on photosynthesis characteristic of Beibei 447 Jinchen orange. J Fruit Sci 26:275–280

    CAS  Google Scholar 

  • Maxwell K, Johnson GN (2000) Chlorophyll fluorescence-a practical guide. J Exp Bot 51:659–668

    Article  PubMed  CAS  Google Scholar 

  • Mehne-Jakobs B (1995) The influence of magnesium deficiency on carbohydrate concentrations in Norway spruce (Picea abies) needles. Tree Physiol 15:577–584

    PubMed  CAS  Google Scholar 

  • Mehne-Jakobs B (1996) Magnesium deficiency treatment causes reductions in photosynthesis of well-nourished Norway spruce. Trees 10:293–300

    Article  Google Scholar 

  • Peaslee DE, Moss DN (1966) Photosynthesis in K- and Mg-deficient maize (Zea Mays L.) leaves. Soil Sci Soc Amer J 30:220–223

    Article  CAS  Google Scholar 

  • Polle A, Otter T, Mehne-Jakobs B (1994) Effect of magnesium-deficiency on antioxidative systems in needles of Norway spruce [Picea abies (L.) Karst.] grown with different ratios of nitrate and ammonium as nitrogen sources. New Phytol 128:621–628

    Article  CAS  Google Scholar 

  • Riga P, Anza M (2003) Effect of magnesium deficiency on pepper growth parameters. Implications for the determination of Mg-critical value. J Plant Nutr 26:1581–1593

    Article  CAS  Google Scholar 

  • Riga P, Anza M, Garbisu C (2005) Suitability of the antioxidative system as marker of magnesium deficiency in Capsicum annuum L. plants under controlled conditions. Plant Growth Regul 46:51–59

    Article  CAS  Google Scholar 

  • Setlik I, Allakhveridiev SI, Nedbal L, Setlikova E, Klimov VV (1990) Three types of Photosystem II photoinactivation. I. Damaging process on the acceptor side. Photosynth Res 23:39–48

    Article  CAS  Google Scholar 

  • Shang W, Feierabend J (1999) Dependence of catalase photoinactivation in rye leaves on light intensity and quality and characterization of a chloroplast-mediated inactivation in red light. Photosynth Res 59:201–213

    Article  CAS  Google Scholar 

  • Sheen J (1994) Feedback control of gene expression. Photosynth Res 39:427–438

    Article  CAS  Google Scholar 

  • Smit MF, van Heerden PDR, Pienaar JJ, Weissflog L, Strasser RJ, Krüger GHT (2009) Effect of trifluoroacetate, a persistent degradation product of fluorinated hydrocarbons, on Phaseolus vulgaris and Zea mays. Plant Physiol Biochem 47:623–634

    Article  PubMed  CAS  Google Scholar 

  • Srivastava A, Guisse B, Greppin H, Strasser RJ (1997) Regulation of antenna structure and electron transport in photosystem II of Pisum sativum under elevated temperature probed by the fast polyphasic chlorophyll a fluorescence transient: OKJIP. Biochim Biophys Acta 1320:95–106

    Article  CAS  Google Scholar 

  • Strasser RJ, Tsimilli-Micheal M, Srivastava A (2004) Analysis of the chlorophyll a fluorescence transient. In: Papageorgiou GC, Govindjee (eds) Chlorophyll a fluorescence: a signature of photosynthesis. Advances in photosynthesis and respiration, vol 19. Springer, Berlin, pp 321–362

    Google Scholar 

  • Sun OJ, Payn TW (1999) Magnesium nutrition and photosynthesis in Pinus radiata: clonal variation and influence of potassium. Tree Physiol 19:535–540

    Article  PubMed  CAS  Google Scholar 

  • Sun OJ, Gielen GTHP, Sands R, Smith CT, Thorn AJ (2001) Growth, Mg nutrition and photosynthetic activity in Pinus radiata: evidence that NaCl addition counteracts the impact of low Mg supply. Trees 15:335–340

    Article  CAS  Google Scholar 

  • Tewari PK, Kumar P, Tewari N, Srivastava S, Sharma PN (2004) Macronutrient deficiencies and differential antioxidant responses-influence on the activity and expression of superoxide dismutase in maize. Plant Sci 166:687–694

    Article  CAS  Google Scholar 

  • Tewari PK, Kumar P, Sharma PN (2006) Magnesium deficiency induced oxidative stress and antioxidant responses in mulberry plants. Sci Hort 108:7–14

    Article  Google Scholar 

  • Yang GD, Zhu ZJ, Ji YM (2002) Effect of light intensity and magnesium deficiency on chlorophyll fluorescence and active oxygen in cucumber leaves. Plant Nutr Fer Sci 8:15–118

    Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the earmarked fund for China Agriculture Research System.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li-Song Chen.

Additional information

Communicated by B. Wang.

G.-H. Yang and L.-T. Yang contributed equally as first author.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 3827 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, GH., Yang, LT., Jiang, HX. et al. Physiological impacts of magnesium-deficiency in Citrus seedlings: photosynthesis, antioxidant system and carbohydrates. Trees 26, 1237–1250 (2012). https://doi.org/10.1007/s00468-012-0699-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00468-012-0699-2

Keywords

Navigation