Skip to main content
Log in

Dynamic modeling of flexible multibody systems with complex geometry via finite cell method of absolute nodal coordinate formulation

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

Practical multibody systems usually consist of flexible bodies of complex shapes, but existing dynamic modeling methods work efficiently only for the systems with bodies of simple and regular shapes. This study proposes a novel computational method for simulating dynamics of flexible multibody systems with flexible bodies of complex shapes via an integration of the finite cell method (FCM) and the absolute nodal coordinate formulation. The classic mesh of FCM is not aligned to the body boundaries, leading to a large number of integration points in cut cells. This study utilizes the Boolean FCM with compressed sub-cell method to reduce the number of integration points and improve computation efficiency. Seven static and dynamic numerical examples are used to validate the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Algorithm 1
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33

Similar content being viewed by others

References

  1. Shabana AA (1996) An absolute nodal coordinate formulation for the large rotation and deformation analysis of flexible bodies. Technical Report# MBS96-1-UIC, Department of Mechanical Engineering, University of Illinois at Chicago

  2. Nachbagauer K, Gruber P, Gerstmayr J (2013) Structural and continuum mechanics approaches for a 3D shear deformable ANCF beam finite element: application to static and linearized dynamic examples. J Comput Nonlinear Dyn 8(2):021004

    Article  Google Scholar 

  3. Olshevskiy A, Dmitrochenko O, Kim CW (2014) Three-dimensional solid brick element using slopes in the absolute nodal coordinate formulation. J Comput Nonlinear Dyn 9(2):021001

    Article  Google Scholar 

  4. Gerstmayr J, Sugiyama H, Mikkola A (2013) Review on the absolute nodal coordinate formulation for large deformation analysis of multibody systems. J Comput Nonlinear Dyn 8(3):031016

    Article  Google Scholar 

  5. Wei C, Wang L, Shabana AA (2015) A total Lagrangian ANCF liquid sloshing approach for multibody system applications. J Comput Nonlinear Dyn 10(5):051014

    Article  Google Scholar 

  6. Gerstmayr J, Shabana AA (2006) Analysis of thin beams and cables using the absolute nodal co-ordinate formulation. Nonlinear Dyn 45:109–130

    Article  Google Scholar 

  7. Dmitrochenko ON, Pogorelov DY (2003) Generalization of plate finite elements for absolute nodal coordinate formulation. Multibody Sys Dyn 10:17–43

    Article  Google Scholar 

  8. Shabana AA, Xu L (2021) Rotation-based finite elements: reference-configuration geometry and motion description. Acta Mech Sin 37:105–126

    Article  MathSciNet  Google Scholar 

  9. Liu C, Tian Q, Yan D, Hu H (2013) Dynamic analysis of membrane systems undergoing overall motions, large deformations and wrinkles via thin shell elements of ANCF. Comput Methods Appl Mech Eng 258:81–95

    Article  MathSciNet  Google Scholar 

  10. Luo K, Hu H, Liu C, Tian Q (2017) Model order reduction for dynamic simulation of a flexible multibody system via absolute nodal coordinate formulation. Comput Methods Appl Mech Eng 324:573–594

    Article  MathSciNet  Google Scholar 

  11. He G, Patel M, Shabana A (2017) Integration of localized surface geometry in fully parameterized ANCF finite elements. Comput Methods Appl Mech Eng 313:966–985

    Article  MathSciNet  Google Scholar 

  12. Shabana AA (2015) Definition of ANCF finite elements. J Comput Nonlinear Dyn 10(5):054506

    Article  Google Scholar 

  13. Shabana AA (2018) Continuum-based geometry/analysis approach for flexible and soft robotic systems. Soft Rob 5(5):613–621

    Article  Google Scholar 

  14. Tian Q, Zhang P, Luo K (2021) Dynamics of soft mechanical systems actuated by dielectric elastomers. Mech Syst Signal Process 151:107392

    Article  Google Scholar 

  15. Shabana AA (2023) An overview of the ANCF approach, justifications for its use, implementation issues, and future research directions. Multibody Syst Dyn 58(3):1–45

    MathSciNet  Google Scholar 

  16. Liu JP, Shu XB, Kanazawa H, Imaoka K, Mikkola A, Ren GX (2018) A model order reduction method for the simulation of gear contacts based on arbitrary Lagrangian Eulerian formulation. Comput Methods Appl Mech Eng 338:68–96

    Article  MathSciNet  Google Scholar 

  17. Liu JW, Liu JP, Shu XB, Mikkola A, Ren GX (2019) An efficient multibody dynamic model of three-dimensional meshing contacts in helical gear-shaft system and its solution. Mech Mach Theory 142:103607

    Article  Google Scholar 

  18. Nackenhorst U (2004) The ALE-formulation of bodies in rolling contact: Theoretical foundations and finite element approach. Comput Methods Appl Mech Eng 193(39–41):4299–4322

    Article  MathSciNet  Google Scholar 

  19. Weidauer T, Willner K (2020) Numerical treatment of frictional contact in ALE formulation for disc brake assemblies. Mech Syst Signal Process 145:106916

    Article  Google Scholar 

  20. Schillinger D, Ruess M (2015) The Finite Cell Method: A review in the context of higher-order structural analysis of CAD and image-based geometric models. Arch Comput Methods Eng 22:391–455

    Article  MathSciNet  Google Scholar 

  21. Parvizian J, Düster A, Rank E (2007) Finite cell method: h-and p-extension for embedded domain problems in solid mechanics. Comput Mech 41(1):121–133

    Article  MathSciNet  Google Scholar 

  22. Düster A, Parvizian J, Yang Z, Rank E (2008) The finite cell method for three-dimensional problems of solid mechanics. Comput Methods Appl Mech Eng 197(45–48):3768–3782

    Article  MathSciNet  Google Scholar 

  23. Löhner R, Cebral JR, Camelli FE, Appanaboyina S, Baum JD, Mestreau EL, Soto OA (2008) Adaptive embedded and immersed unstructured grid techniques. Comput Methods Appl Mech Eng 197(25–28):2173–2197

    Article  MathSciNet  Google Scholar 

  24. Neittaanmäki P, Tiba D (1995) An embedding of domains approach in free boundary problems and optimal design. SIAM J Control Optim 33(5):1587–1602

    Article  MathSciNet  Google Scholar 

  25. Mittal R, Iaccarino G (2005) Immersed boundary methods. Annu Rev Fluid Mech 37:239–261

    Article  MathSciNet  Google Scholar 

  26. Peskin CS (2002) The immersed boundary method. Acta Numer 11:479–517

    Article  MathSciNet  Google Scholar 

  27. Glowinski R, Kuznetsov Y (2007) Distributed Lagrange multipliers based on fictitious domain method for second order elliptic problems. Comput Methods Appl Mech Eng 196(8):1498–1506

    Article  MathSciNet  Google Scholar 

  28. Ramiere I, Angot P, Belliard M (2007) A fictitious domain approach with spread interface for elliptic problems with general boundary conditions. Comput Methods Appl Mech Eng 196(4–6):766–781

    Article  MathSciNet  Google Scholar 

  29. Abedian A, Parvizian J, Düster A, Rank E (2013) The finite cell method for the J2 flow theory of plasticity. Finite Elem Anal Des 69:37–47

    Article  Google Scholar 

  30. Taghipour A, Parvizian J, Heinze S, Düster A (2018) The finite cell method for nearly incompressible finite strain plasticity problems with complex geometries. Comput Math Appl 75(9):3298–3316

    Article  MathSciNet  Google Scholar 

  31. Hubrich S, Düster A (2019) Numerical integration for nonlinear problems of the finite cell method using an adaptive scheme based on moment fitting. Comput Math Appl 77(7):1983–1997

    Article  MathSciNet  Google Scholar 

  32. Heinze S, Joulaian M, Düster A (2015) Numerical homogenization of hybrid metal foams using the finite cell method. Comput Math Appl 70(7):1501–1517

    Article  MathSciNet  Google Scholar 

  33. Heinze S, Bleistein T, Düster A, Diebels S, Jung A (2018) Experimental and numerical investigation of single pores for identification of effective metal foams properties. ZAMM-J Appl Math Mech/Zeitschrift für Angewandte Math Mech 98(5):682–695

    Article  MathSciNet  Google Scholar 

  34. Elhaddad M, Zander N, Kollmannsberger S, Shadavakhsh A, Nübel V, Rank E (2015) Finite cell method: high-order structural dynamics for complex geometries. Int J Struct Stab Dyn 15(07):1540018

    Article  MathSciNet  Google Scholar 

  35. Joulaian M, Duczek S, Gabbert U, Düster A (2014) Finite and spectral cell method for wave propagation in heterogeneous materials. Comput Mech 54:661–675

    Article  MathSciNet  Google Scholar 

  36. Zakian P, Nadi M, Tohidi M (2021) Finite cell method for detection of flaws in plate structures using dynamic responses. Structures 34:327–338

    Article  Google Scholar 

  37. Zander N, Kollmannsberger S, Ruess M, Yosibash Z, Rank E (2012) The finite cell method for linear thermoelasticity. Comput Math Appl 64(11):3527–3541

    Article  MathSciNet  Google Scholar 

  38. Yang Z, Kollmannsberger S, Düster A, Ruess M, Garcia EG, Burgkart R, Rank E (2011) Non-standard bone simulation: interactive numerical analysis by computational steering. Comput Vis Sci 14:207–216

    Article  MathSciNet  Google Scholar 

  39. Ruess M, Tal D, Trabelsi N, Rank E (2012) The finite cell method for bone simulations: verification and validation. Biomech Model Mechanobiol 11:425–437

    Article  Google Scholar 

  40. Verhoosel CV, Van Zwieten GJ, Van Rietbergen B, Borst R (2015) Image-based goal-oriented adaptive isogeometric analysis with application to the micro-mechanical modeling of trabecular bone. Comput Methods Appl Mech Eng 284:138–164

    Article  MathSciNet  Google Scholar 

  41. Duczek S, Liefold S, Gabbert U (2015) The finite and spectral cell methods for smart structure applications: transient analysis. Acta Mech 226(3):845–869

    Article  MathSciNet  Google Scholar 

  42. Düster A, Sehlhorst HG, Rank E (2012) Numerical homogenization of heterogeneous and cellular materials utilizing the finite cell method. Comput Mech 50:413–431

    Article  MathSciNet  Google Scholar 

  43. Nagaraja S, Elhaddad M, Ambati M, Kollmannsberger S, De LL, Rank E (2019) Phase-field modeling of brittle fracture with multi-level hp-FEM and the finite cell method. Comput Mech 63:1283–1300

    Article  MathSciNet  Google Scholar 

  44. Parvizian J, Düster A, Rank E (2012) Topology optimization using the finite cell method. Optim Eng 13(1):57–78

    Article  MathSciNet  Google Scholar 

  45. Cai S, Zhang W, Zhu J, Gao T (2014) Stress constrained shape and topology optimization with fixed mesh: a B-spline finite cell method combined with level set function. Comput Methods Appl Mech Eng 278:361–387

    Article  MathSciNet  Google Scholar 

  46. Groen JP, Langelaar M, Sigmund O, Ruess M (2017) Higher-order multi-resolution topology optimization using the finite cell method. Int J Numer Meth Eng 110(10):903–920

    Article  MathSciNet  Google Scholar 

  47. Gao Y, Guo Y, Zheng S (2019) A NURBS-based finite cell method for structural topology optimization under geometric constraints. Comput Aided Geom Design 72:1–18

    Article  MathSciNet  Google Scholar 

  48. Bog T, Zander N, Kollmannsberger S, Rank E (2015) Normal contact with high order finite elements and a fictitious contact material. Comput Math Appl 70(7):1370–1390

    Article  MathSciNet  Google Scholar 

  49. Konyukhov A, Lorenz C, Schweizerhof K (2015) Various contact approaches for the finite cell method. Comput Mech 56:331–351

    Article  MathSciNet  Google Scholar 

  50. Bog T, Zander N, Kollmannsberger S, Rank E (2018) Weak imposition of frictionless contact constraints on automatically recovered high-order, embedded interfaces using the finite cell method. Comput Mech 61:385–407

    Article  MathSciNet  Google Scholar 

  51. Rank E, Kollmannsberger S, Sorger C, Düster A (2011) Shell finite cell method: a high order fictitious domain approach for thin-walled structures. Comput Methods Appl Mech Eng 200(45–46):3200–3209

    Article  MathSciNet  Google Scholar 

  52. Kudela L, Zander N, Bog T, Kollmannsberger S, Rank E (2015) Efficient and accurate numerical quadrature for immersed boundary methods. Adv Model Simul Eng Sci 2:1–22

    Article  Google Scholar 

  53. He G, Gao K, Yu Z, Jiang J, Li Q (2022) Adaptive subdomain integration method for representing complex localized geometry in ANCF. Acta Mech Sin 38(3):521442

    Article  MathSciNet  Google Scholar 

  54. Kudela L, Zander N, Kollmannsberger S, Rank E (2016) Smart octrees: accurately integrating discontinuous functions in 3D. Comput Methods Appl Mech Eng 306:406–426

    Article  MathSciNet  Google Scholar 

  55. Duczek S, Duvigneau F, Gabbert U (2016) The finite cell method for tetrahedral meshes. Finite Elem Anal Des 121:18–32

    Article  MathSciNet  Google Scholar 

  56. Xu F, Schillinger D, Kamensky D, Varduhn V, Wang C, Hsu MC (2016) The tetrahedral finite cell method for fluids: immersogeometric analysis of turbulent flow around complex geometries. Comput Fluids 141:135–154

    Article  MathSciNet  Google Scholar 

  57. Abedian A, Düster A (2017) An extension of the finite cell method using boolean operations. Comput Mech 59:877–886

    Article  MathSciNet  Google Scholar 

  58. Petö M, Duvigneau F, Eisenträger S (2020) Enhanced numerical integration scheme based on image-compression techniques: application to fictitious domain methods. Adv Model Simul Eng Sci 7:1–42

    Google Scholar 

  59. Petö M, Garhuom W, Duvigneau F, Eisenträger S, Düster A, Juhre D (2022) Octree-based integration scheme with merged sub-cells for the finite cell method: application to non-linear problems in 3D. Comput Methods Appl Mech Eng 401:115565

    Article  MathSciNet  Google Scholar 

  60. Liu C, Tian Q, Hu H (2011) Dynamics of a large scale rigid–flexible multibody system composed of composite laminated plates. Multibody Sys Dyn 26:283–305

    Article  Google Scholar 

  61. Shabana AA (2005) Dynamics of multibody systems. Cambridge University Press, New York

    Book  Google Scholar 

  62. Schillinger D, Ruess M, Zander N, Bazilevs Y, Düster A, Rank E (2012) Small and large deformation analysis with the p-and B-spline versions of the finite cell method. Comput Mech 50:445–478

    Article  MathSciNet  Google Scholar 

  63. Ruess M, Schillinger D, Bazilevs Y, Varduhn V, Rank E (2013) Weakly enforced essential boundary conditions for NURBS-embedded and trimmed NURBS geometries on the basis of the finite cell method. Int J Numer Meth Eng 95(10):811–846

    Article  MathSciNet  Google Scholar 

  64. Nguyen L, Stoter S, Baum T, Kirschke J, Ruess M, Yosibash Z, Schillinger D (2017) Phase-field boundary conditions for the voxel finite cell method: surface-free stress analysis of CT-based bone structures. Int J Numer Methods Biomed Eng 33(12):e2880

    Article  MathSciNet  Google Scholar 

  65. Larsson K, Kollmannsberger S, Rank E, Larson MG (2022) The finite cell method with least squares stabilized Nitsche boundary conditions. Comput Methods Appl Mech Eng 393:114792

    Article  MathSciNet  Google Scholar 

  66. Zienkiewicz OC, Taylor RL (2005) The finite element method-the basis, vol 1. Butterworth-Heinemann, London

    Google Scholar 

  67. Gerstmayr J, Shabana AA (2005) Efficient integration of the elastic forces and thin three-dimensional beam elements in the absolute nodal coordinate formulation. In: proceedings of the eccomas thematic conference on multibody dynamics, Madrid, Spain

  68. Chung J, Hulbert G (1993) A time integration algorithm for structural dynamics with improved numerical dissipation: the generalized-a method. ASME J Appl Mech 60:371–375

    Article  MathSciNet  Google Scholar 

  69. Arnold M, Brüls O (2007) Convergence of the generalized-α scheme for constrained mechanical systems. Multibody Sys Dyn 18:185–202

    Article  MathSciNet  Google Scholar 

  70. Bauchau OA, Betsch P, Cardona A, Gerstmayr J, Jonker B, Masarati P, Sonneville V (2016) Validation of flexible multibody dynamics beam formulations using benchmark problems. Multibody Sys Dyn 37:29–48

    Article  MathSciNet  Google Scholar 

  71. Dowell EH, Traybar JJ (1975) An experimental study of the nonlinear stiffness of a rotor blade undergoing flap, lag, and twist deformations. Princeton University, AMS Report No. 1194

  72. Simo JC, Vu-Quoc L (1986) On the dynamics of flexible beams under large overall motions-the plane case: Part II. J Appl Mech 53:855–863

    Article  Google Scholar 

  73. Simo JC, Vu-Quoc L (1988) On the dynamics in space of rods undergoing large motions—a geometrically exact approach. Comput Methods Appl Mech Eng 66(2):125–161

    Article  MathSciNet  Google Scholar 

  74. Hyldahl P, Mikkola A, Balling O (2013) A thin plate element based on the combined arbitrary Lagrange-Euler and absolute nodal coordinate formulations. Proc Inst Mech Eng Part K: J Multi-body Dyn 227(3):211–219

    Google Scholar 

  75. Dmitrochenko ON, Mikkola A (2008) Two simple triangular plate elements based on the absolute nodal coordinate formulation. J Comput Nonlinear Dyn 3(4):041012

    Article  Google Scholar 

  76. Kremer JM, Shabana AA, Widera GEO (1994) An eight noded composite plate element for the dynamic analysis of spatial mechanism systems. Nonlinear Dyn 5:459–476

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China under Grant 12125201.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiang Tian.

Ethics declarations

Conflict of interest

The authors declare no potential conflicts of interest with respect to the research, authorship, and publication of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, Y., Guo, J., Tian, Q. et al. Dynamic modeling of flexible multibody systems with complex geometry via finite cell method of absolute nodal coordinate formulation. Comput Mech (2024). https://doi.org/10.1007/s00466-024-02482-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00466-024-02482-4

Keywords

Navigation