Skip to main content
Log in

Topology optimization using the finite cell method

  • Published:
Optimization and Engineering Aims and scope Submit manuscript

Abstract

Huge effort has been spent over the past decades to develop efficient numerical methods for topology optimization of mechanical structures. Most recent investigations have focused on increasing the efficiency and robustness, improving the optimization schemes and extending them to multidisciplinary objective functions. The vast majority of available methods is based on low order finite elements, assuming one element as the smallest entity which can be assigned material in the optimization process. Whereas the present paper uses only a very simple, heuristic optimization procedure, it investigates in detail the feasibility of high order elements for topology optimization. The Finite Cell Method, an extension of the p-version of FEM is used, which completely separates between the description of the geometry of a structure and cells, where the high order shape functions are defined. Whereas geometry is defined on a (very) fine mesh, the material grid, shape functions live on a much coarser grid of elements, the finite cells. The method takes advantage of the ability of high order elements to accurately approximate even strongly inhomogeneous material distribution within one element and thus boundaries between material and void which pass through the interior of the coarse cells. Very attractive properties of the proposed method can be observed: Due to the high order approach the stress field in the optimized structure is approximated very accurately, no checkerboarding is observed, the iteratively found boundary of the structure is very smooth and the observed number of iterations is in general very small.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allaire G, Jouve F, Toader A (2004) Structural optimization using sensitivity analysis and a level-set method. J Comput Phys 194/1:363–393

    Article  MathSciNet  Google Scholar 

  • Allaire G, Jouve F (2006) Coupling the level set method and the topological gradient in structural optimization. Solid Mech. Appl. 137/1:3–12

    Article  Google Scholar 

  • Andreassen E, Clausen A, Schevenels M, Lazarov BS, Sigmund O (2010) Efficient topology optimization in MATLAB using 88 lines of code. Struct Multidiscip Optim. doi:10.1007/s00158-010-0594-7

    MATH  Google Scholar 

  • Bendsøe MP (1995) Optimization of structural topology, shape and material. Springer, Germany, pp 136–137

    Google Scholar 

  • Bendsøe MP, Sigmund O (2004) Topology optimization, theory, methods, and applications. Springer, Berlin

    MATH  Google Scholar 

  • Bendsøe MP, Lund E, Olhoff N, Sigmund O (2005) Topology optimization—broadening the areas of application. Control Cybern 34(1):7–35

    MATH  Google Scholar 

  • Bourdin B (2001) Filters in topology optimization. Int J Numer Methods Eng 50:2143–2158

    Article  MathSciNet  MATH  Google Scholar 

  • Challis JV (2010) A discrete level-set topology optimization code written in Matlab. Struct Multidiscip Optim 41:453–464

    Article  MathSciNet  Google Scholar 

  • Düster A, Bröker H, Heidkamp H, Heißerer U, Kollmannsberger S, Krause R, Muthler A, Niggl A, Nübel V, Rücker M, Scholz D (2004) AdhoC 4—user’s guide. Lehrstuhl für Bauinformatik, Technische Universität München

  • Düster A, Parvizian J, Yang Z, Rank E (2008) The finite cell method for three-dimensional problems of solid mechanics. Comput Methods Appl Mech Eng 197:3768–3782

    Article  MATH  Google Scholar 

  • Düster A, Parvizian J, Rank E (2010) Topology optimization based on the finite cell method. Proc Appl Math Mech 10:151–152

    Article  Google Scholar 

  • Eschenauer HA, Olhoff N (2001) Topology optimization of continuum structures: a review. Appl Mech Rev 54(4):331–390

    Article  Google Scholar 

  • Eschenauer HA, Kobelev HA, Schumacher A (1994) Bubble method for topology and shape optimization of structures. Struct Optim 8:142–51

    Article  Google Scholar 

  • Glowinski R, Kuznetsov Y (2007) Distributed Lagrange multipliers based on fictitious domain method for second order elliptic problems. Comput Methods Appl Mech Eng 196:1498–1506

    Article  MathSciNet  MATH  Google Scholar 

  • Huang X, Xie YM (2008) A new look at ESO and BESO optimization methods. Struct Multidiscip Optim 35:89–92

    Article  Google Scholar 

  • Huang X, Xie YM (2010) A further review of ESO type methods for topology optimization. Struct Multidiscip Optim 41:671–683

    Article  MathSciNet  Google Scholar 

  • Huang X, Xie YM (2010) Evolutionary topology optimization of continuum structures with an additional displacement constraint. Struct Multidiscip Optim 40:409–616

    Article  MathSciNet  Google Scholar 

  • Le C, Norato J, Bruns T, Ha C, Tortorelli D (2010) Stress-based topology optimization for continua. Struct Multidiscip Optim 41:605–620

    Article  Google Scholar 

  • Nguyen TH, Paulino GH, Song J, Le CH (2010) A computational paradigm for multiresolution topology optimization (MTOP). Struct Multidisc Optim 41:525–539. doi:10.1007/s00158-009-0443-8

    Article  MathSciNet  Google Scholar 

  • Parvizian J, Fenner RT (1997) Shape optimization by the boundary element method: a comparison between mathematical programming and normal movement approaches. Eng Anal Bound Elem 19:137–145

    Article  Google Scholar 

  • Parvizian J, Düster A, Rank E (2007) Finite cell method: h- and p-extension for embedded domain problems in solid mechanics. Comput Mech 41:121–133

    Article  MathSciNet  MATH  Google Scholar 

  • Rahmatalla S, Swan CC (2003) Form finding of sparse structures with continuum topology optimization. J Struct Eng 129(12):1707–1716

    Article  Google Scholar 

  • Rahmatalla S, Swan CC (2004) A Q4/Q4 continuum structural topology optimization implementation. Struct Multidiscip Optim 27:130–135

    Article  Google Scholar 

  • Ramière I, Angot P, Belliard M (2007) A fictitious domain approach with spread interface for elliptic problems with general boundary conditions. Comput Methods Appl Mech Eng 196:766–781

    Article  MATH  Google Scholar 

  • Rozvany GIN (2001) Aims, scope, methods, history and unified terminology of computer-aided topology optimization in structural mechanics. Struct Multidiscip Optim 21:90–108

    Article  Google Scholar 

  • Saul’ev VK (1963) On solution of some boundary value problems on high performance computers by fictitious domain method. Sib Math J 4:912–925

    MathSciNet  Google Scholar 

  • Sethian JA, Wiegmann A (2000) Structural boundary design via level set and immersed interface methods. J Comput Phys 163:489–528

    Article  MathSciNet  MATH  Google Scholar 

  • Sigmund O (2007) Morphology-based black and white filters for topology optimization. Struct Multidisc Optim 33:401–424

    Article  Google Scholar 

  • Sigmund O, Petersson J (1998) Numerical instabilities in topology optimization: a survey on procedures dealing with checkerboards, mesh-dependencies and local minima. Struct Optim 16:68–75

    Article  Google Scholar 

  • Sigmund O, Clausen PM (2007) Topology optimization using a mixed formulation: an alternative way to solve pressure load problems. Comput Methods Appl Mech Eng 196:1874–1889

    Article  MathSciNet  MATH  Google Scholar 

  • Szabó BA, Babuška I (1991) Finite element analysis. Wiley, New York

    MATH  Google Scholar 

  • Szabó BA, Düster A, Rank E (2004) The p-version of the finite element method. In: Stein E, de Borst R., Hughes TJR (eds) Encyclopedia of computational mechanics, vol 1. Wiley, New York, pp 119–139

    Google Scholar 

  • Tang X, Bassir DH, Zhang W (2010) Shape sizing optimization and material selection based on mixed variables and genetic algorithm. Optim Eng. doi:10.1007/s11081-010-9125-z

    Google Scholar 

  • Zhou M, Rozvany GIN (2001) On the validity of ESO type methods in topology optimization. Struct Multidisc Optim 21:80–83

    Article  Google Scholar 

  • Xie YM, Steven GP (1997) Evolutionary structural optimization. Springer, London, pp 12–29

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Parvizian.

Additional information

This work is the result of an institutional partnership of the three authors being supported by the Alexander von Humboldt Foundation. This support is gratefully acknowledged.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Parvizian, J., Düster, A. & Rank, E. Topology optimization using the finite cell method. Optim Eng 13, 57–78 (2012). https://doi.org/10.1007/s11081-011-9159-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11081-011-9159-x

Keywords

Navigation