Skip to main content
Log in

An extension of the finite cell method using boolean operations

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

In the finite cell method, the fictitious domain approach is combined with high-order finite elements. The geometry of the problem is taken into account by integrating the finite cell formulation over the physical domain to obtain the corresponding stiffness matrix and load vector. In this contribution, an extension of the FCM is presented wherein both the physical and fictitious domain of an element are simultaneously evaluated during the integration. In the proposed extension of the finite cell method, the contribution of the stiffness matrix over the fictitious domain is subtracted from the cell, resulting in the desired stiffness matrix which reflects the contribution of the physical domain only. This method results in an exponential rate of convergence for porous domain problems with a smooth solution and accurate integration. In addition, it reduces the computational cost, especially when applying adaptive integration schemes based on the quadtree/octree. Based on 2D and 3D problems of linear elastostatics, numerical examples serve to demonstrate the efficiency and accuracy of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29

Similar content being viewed by others

References

  1. Abedian A, Parvizian J, Düster A, Khademyzadeh H, Rank E (2013) Performance of different integration schemes in facing discontinuities in the finite cell method. Int J Comput Methods 10(3):1350002/1–24

    Article  MathSciNet  MATH  Google Scholar 

  2. Abedian A, Parvizian J, Düster A, Rank E (2013) The finite cell method for the J\(_2\) flow theory of plasticity. Finite Elem Anal Des 69:37–47

    Article  MATH  Google Scholar 

  3. Cools R, Kim KJ (2000) A survey of known and new cubature formulas for the unit disk. Korean J Comput Appl Math 7(3):477–485

    MathSciNet  MATH  Google Scholar 

  4. Düster A, Bröker H, Heidkamp H, Heißerer U, Kollmannsberger S, Wassouf Z, Krause R, Muthler A, Niggl A, Nübel V, Rücker M, Scholz D (2004) AdhoC\(^4\)—user’s guide. Technische Universität München, Lehrstuhl für Bauinformatik

  5. Düster A, Parvizian J, Yang Z, Rank E (2008) The finite cell method for three-dimensional problems of solid mechanics. Comput Methods Appl Mech Eng 197:3768–3782

  6. Fries TP, Omerović S (2016) Higher-order accurate integration of implicit geometries. Int J Numer Methods Eng 106(5):323–371

    Article  MathSciNet  MATH  Google Scholar 

  7. Garcia-Ruiz MJ, Steven GP (1999) Fixed grid finite elements in elasticity problems. Eng Comput 16(2):145–164

    Article  MATH  Google Scholar 

  8. Hu N, Wang B, Tan GW, Yao ZH, Yuan WF (2000) Effective elastic properties of 2-D solids with circular holes: numerical simulations. Compos Sci Technol 60(9):1811–1823

    Article  Google Scholar 

  9. http://www.holoborodko.com/

  10. Isida M, Igawa H (1991) Analysis of a zig-zag array of circular holes in an infinite solid under uniaxial tension. Int J Solids Struct 27(7):849–864

    Article  Google Scholar 

  11. Joulaian M, Hubrich S, Düster A (2016) Numerical integration of discontinuities on arbitrary domains based on moment fitting. Comput Mech 57:979–999

    Article  MathSciNet  MATH  Google Scholar 

  12. Kudela L, Zander N, Kollmannsberger S, Rank E (2016) Smart octrees: accurately integrating discontinuous functions in 3D. Comput Methods Appl Mech Eng 306:406–426

    Article  MathSciNet  Google Scholar 

  13. Li B, Wang B, Reid SR (2010) Effective elastic properties of randomly distributed void models for porous materials. Int J Mech Sci 52(5):726–732

    Article  Google Scholar 

  14. Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. Int J Numer Methods Eng 96:512–528

    Article  MathSciNet  MATH  Google Scholar 

  15. Neittaanmäki P, Tiba D (1995) An embedding of domains approach in free boundary problems and optimal design. SIAM J Control Optim 33(5):1587–1602

    Article  MathSciNet  MATH  Google Scholar 

  16. Paiboon J, Griffiths DV, Huang J, Fenton GA (2013) Numerical analysis of effective elastic properties of geomaterials containing voids using 3D random fields and finite elements. Int J Solids Struct 50(20):3233–3241

    Article  Google Scholar 

  17. Parvizian J, Düster A, Rank E (2007) Finite cell method-h- and p-extension for embedded domain problems in solid mechanics. Comput Mech 41:121–133

    Article  MathSciNet  MATH  Google Scholar 

  18. Ramière I, Angot P, Belliard M (2007) A fictitious domain approach with spread interface for elliptic problems with general boundary conditions. Comput Methods Appl Mech Eng 196:766–781

    Article  MathSciNet  MATH  Google Scholar 

  19. Ruess M, Schillinger D, Bazilevs Y, Varduhn V, Rank E (2013) Weakly enforced essential boundary conditions for NURBS-embedded and trimmed NURBS geometries on the basis of the finite cell method. Int J Numer Methods Eng 95(10):811–846

  20. Saul’ev VK (1963) On solution of some boundary value problems on high performance computers by fictitious domain method. Siberia Math J 4:912–925

    Google Scholar 

  21. Schillinger D, Ruess M, Zander N, Bazilevs Y, Düster A, Rank E (2012) Small and large deformation analysis with the p- and B-spline versions of the finite cell method. Comput Mech 50:445–478

    Article  MathSciNet  MATH  Google Scholar 

  22. Szabó BA, Babuška I (1991) Finite element analysis. Wiley, London

    MATH  Google Scholar 

  23. Szabó BA, Düster A, Rank E (2004) The p-version of the finite element method. In: Stein E, de Borst R, Hughes TJR (eds) Encyclopedia of computational mechanics, vol 1. Wiley, London, pp 119–139 (Chapter 5)

    Google Scholar 

Download references

Acknowledgements

This work has been supported by the Alexander von Humboldt Foundation. This support is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alireza Abedian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abedian, A., Düster, A. An extension of the finite cell method using boolean operations. Comput Mech 59, 877–886 (2017). https://doi.org/10.1007/s00466-017-1378-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-017-1378-3

Keywords

Navigation