Skip to main content
Log in

High-resolution 3D computation of time-periodic long-wake flows with the Carrier-Domain Method and Space–Time Variational Multiscale method with isogeometric discretization

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

The Carrier-Domain Method was introduced for high-resolution computation of time-periodic long-wake flows. The cost-effectiveness of the method makes such computations practical in 3D. A short segment of the wake domain, the carrier domain, moves in the free-stream direction, from the beginning of the long wake domain to the end. The data at the moving inflow plane comes from the time-periodic data computed at an earlier position of the carrier domain. With the high mesh resolution that can easily be afforded over the short domain segment, the wake flow patterns can be carried, with superior accuracy, far downstream. Computing the long-wake flow with a high-resolution moving mesh that covers a short segment of the wake domain at any instant during the computation would certainly be far more cost-effective than computing it with a high-resolution fixed mesh that covers the entire length. We present high-resolution 3D computation of time-periodic long-wake flow for a cylinder and a wind turbine, both computed with isogeometric discretization and the Space–Time Variational Multiscale method. In the isogeometric discretization, the basis functions are quadratic NURBS in space and linear in time. The cylinder flow is at Reynolds number 100. At this Reynolds number, the flow has an easily discernible vortex shedding period. The wake flow is computed up to 350 diameters downstream of the cylinder, far enough to see the secondary vortex street. In the wind turbine long-wake flow computation, the velocity data at the inflow boundary of the wake domain comes from an earlier wind turbine computation, with the turbine rotor having a diameter of \({126}\,\hbox {m}\), extracted by projection from a plane located \({10}\,\hbox {m}\) downstream of the turbine. The wake flow is computed up to \({482}\,\hbox {m}\) downstream of the wind turbine. In both the cylinder and wind turbine wake flow computations, the flow patterns obtained with the full domain and carrier domain show a near-perfect match, clearly demonstrating the effectiveness and practicality of the Carrier-Domain Method in high-resolution 3D computation of time-periodic long-wake flows.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30

Similar content being viewed by others

Notes

  1. It was pointed out as early as in 2007 (see [108]) that the ZSS estimation is needed in patient-specific arterial FSI computations with image-based geometries because the images are not for the ZSS of the artery.

References

  1. Liu Y, Takizawa K, Tezduyar TE, Kuraishi T, Zhang Y (2022) Carrier-domain method for high-resolution computation of time-periodic long-wake flows. Comput Mech 71:169–190. https://doi.org/10.1007/s00466-022-02230-6

    Article  MathSciNet  Google Scholar 

  2. Osawa Y, Kalro V, Tezduyar T (1999) Multi-domain parallel computation of wake flows. Comput Methods Appl Mech Eng 174:371–391. https://doi.org/10.1016/S0045-7825(98)00305-3

    Article  ADS  Google Scholar 

  3. Kuraishi T, Zhang F, Takizawa K, Tezduyar TE (2021) Wind turbine wake computation with the ST-VMS method, isogeometric discretization and multidomain method: I. Computational framework. Comput Mech 68:113–130. https://doi.org/10.1007/s00466-021-02022-4

    Article  MathSciNet  Google Scholar 

  4. Takizawa K, Tezduyar TE (2011) Multiscale space-time fluid-structure interaction techniques. Comput Mech 48:247–267. https://doi.org/10.1007/s00466-011-0571-z

    Article  MathSciNet  Google Scholar 

  5. Takizawa K, Tezduyar TE (2012) Space-time fluid-structure interaction methods. Math Models Methods Appl Sci 22(supp02):1230001. https://doi.org/10.1142/S0218202512300013

    Article  MathSciNet  Google Scholar 

  6. Takizawa K, Tezduyar TE, Kuraishi T (2015) Multiscale ST methods for thermo-fluid analysis of a ground vehicle and its tires. Math Models Methods Appl Sci 25:2227–2255. https://doi.org/10.1142/S0218202515400072

    Article  MathSciNet  Google Scholar 

  7. Takizawa K, Henicke B, Puntel A, Spielman T, Tezduyar TE (2012) Space-time computational techniques for the aerodynamics of flapping wings. J Appl Mech 79:010903. https://doi.org/10.1115/1.4005073

    Article  Google Scholar 

  8. Takizawa K, Tezduyar TE, Otoguro Y, Terahara T, Kuraishi T, Hattori H (2017) Turbocharger flow computations with the Space-Time Isogeometric Analysis (ST-IGA). Comput Fluids 142:15–20. https://doi.org/10.1016/j.compfluid.2016.02.021

    Article  MathSciNet  Google Scholar 

  9. Takizawa K, Tezduyar TE, Otoguro Y (2018) Stabilization and discontinuity-capturing parameters for space-time flow computations with finite element and isogeometric discretizations. Comput Mech 62:1169–1186. https://doi.org/10.1007/s00466-018-1557-x

    Article  MathSciNet  Google Scholar 

  10. Otoguro Y, Takizawa K, Tezduyar TE (2020) Element length calculation in B-spline meshes for complex geometries. Comput Mech 65:1085–1103. https://doi.org/10.1007/s00466-019-01809-w

    Article  MathSciNet  Google Scholar 

  11. Korobenko A, Yan J, Gohari SMI, Sarkar S, Bazilevs Y (2017) FSI simulation of two back-to-back wind turbines in atmospheric boundary layer flow. Comput Fluids 158:167–175. https://doi.org/10.1016/j.compfluid.2017.05.010

    Article  MathSciNet  Google Scholar 

  12. Bazilevs Y, Calo VM, Hughes TJR, Zhang Y (2008) Isogeometric fluid-structure interaction: theory, algorithms, and computations. Comput Mech 43:3–37

    Article  MathSciNet  Google Scholar 

  13. Bazilevs Y, Takizawa K, Tezduyar TE (2013) Computational fluid–structure interaction: methods and applications. Wiley. ISBN 978-0470978771

  14. Kuraishi T, Zhang F, Takizawa K, Tezduyar TE (2021) Wind turbine wake computation with the ST-VMS method, isogeometric discretization and multidomain method: II. Spatial and temporal resolution. Comput Mech 68:175–184. https://doi.org/10.1007/s00466-021-02025-1

    Article  MathSciNet  Google Scholar 

  15. Zhang F, Kuraishi T, Takizawa K, Tezduyar TE (2022) Wind turbine wake computation with the ST-VMS method and isogeometric discretization: Directional preference in spatial refinement. Comput Mech 69:1031–1040. https://doi.org/10.1007/s00466-021-02129-8

    Article  Google Scholar 

  16. Tezduyar TE, Takizawa K (2023) “Space–time computational flow analysis: Unconventional methods and first-ever solutions”, computer methods in applied mechanics and engineering, published online. https://doi.org/10.1016/j.cma.2023.116137

  17. Tezduyar TE (1992) Stabilized finite element formulations for incompressible flow computations. Adv Appl Mech 28:1–44. https://doi.org/10.1016/S0065-2156(08)70153-4

    Article  MathSciNet  Google Scholar 

  18. Tezduyar TE, Behr M, Liou J (1992) A new strategy for finite element computations involving moving boundaries and interfaces - the deforming-spatial-domain/space-time procedure: I. The concept and the preliminary numerical tests. Comput Methods Appl Mech Eng 94(3):339–351. https://doi.org/10.1016/0045-7825(92)90059-S

    Article  ADS  MathSciNet  Google Scholar 

  19. Tezduyar TE, Behr M, Mittal S, Liou J (1992) A new strategy for finite element computations involving moving boundaries and interfaces - the deforming-spatial-domain/space-time procedure: II. Computation of free-surface flows, two-liquid flows, and flows with drifting cylinders. Comput Methods Appl Mech Eng 94(3):353–371. https://doi.org/10.1016/0045-7825(92)90060-W

    Article  ADS  MathSciNet  Google Scholar 

  20. Hughes TJR, Brooks AN (1979) A multi-dimensional upwind scheme with no crosswind diffusion. In: Hughes TJR (ed) Finite element methods for convection dominated flows, vol AMD-34. ASME, New York, pp 19–35

    Google Scholar 

  21. Brooks AN, Hughes TJR (1982) Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations. Comput Methods Appl Mech Eng 32:199–259

    Article  ADS  MathSciNet  Google Scholar 

  22. Tezduyar TE, Mittal S, Ray SE, Shih R (1992) Incompressible flow computations with stabilized bilinear and linear equal-order-interpolation velocity-pressure elements. Comput Methods Appl Mech Eng 95:221–242. https://doi.org/10.1016/0045-7825(92)90141-6

    Article  ADS  Google Scholar 

  23. Kuraishi T, Takizawa K, Tezduyar TE (2022) Boundary layer mesh resolution in flow computation with the Space-Time Variational Multiscale method and isogeometric discretization. Math Models Methods Appl Sci 32(12):2401–2443. https://doi.org/10.1142/S0218202522500567

    Article  MathSciNet  Google Scholar 

  24. Tezduyar TE (2003) Computation of moving boundaries and interfaces and stabilization parameters. Int J Numer Meth Fluids 43:555–575. https://doi.org/10.1002/fld.505

    Article  MathSciNet  Google Scholar 

  25. Hughes TJR (1995) Multiscale phenomena: Green’s functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles, and the origins of stabilized methods. Comput Methods Appl Mech Eng 127:387–401

    Article  ADS  MathSciNet  Google Scholar 

  26. Hughes TJR, Oberai AA, Mazzei L (2001) Large eddy simulation of turbulent channel flows by the variational multiscale method. Phys Fluids 13:1784–1799

    Article  ADS  CAS  Google Scholar 

  27. Bazilevs Y, Calo VM, Cottrell JA, Hughes TJR, Reali A, Scovazzi G (2007) Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows. Comput Methods Appl Mech Eng 197:173–201

    Article  ADS  MathSciNet  Google Scholar 

  28. Bazilevs Y, Akkerman I (2010) Large eddy simulation of turbulent Taylor–Couette flow using isogeometric analysis and the residual-based variational multiscale method. J Comput Phys 229:3402–3414

    Article  ADS  MathSciNet  CAS  Google Scholar 

  29. Liu Y, Takizawa K, Otoguro Y, Kuraishi T, Tezduyar TE (2022) Flow computation with the space-time isogeometric analysis and higher-order basis functions in time. Math Models Methods Appl Sci 32(12):2445–2475. https://doi.org/10.1142/S0218202522500579

    Article  MathSciNet  Google Scholar 

  30. Hughes TJR, Liu WK, Zimmermann TK (1981) Lagrangian–Eulerian finite element formulation for incompressible viscous flows. Comput Methods Appl Mech Eng 29:329–349

    Article  ADS  MathSciNet  Google Scholar 

  31. Kalro V, Tezduyar TE (2000) A parallel 3D computational method for fluid–structure interactions in parachute systems. Comput Methods Appl Mech Eng 190:321–332. https://doi.org/10.1016/S0045-7825(00)00204-8

    Article  ADS  Google Scholar 

  32. Takizawa K, Bazilevs Y, Tezduyar TE (2022) Isogeometric discretization methods in computational fluid mechanics. Math Models Methods Appl Sci 32(12):2359–2370. https://doi.org/10.1142/S0218202522020018

    Article  MathSciNet  Google Scholar 

  33. Hsu M-C, Akkerman I, Bazilevs Y (2014) Finite element simulation of wind turbine aerodynamics: validation study using NREL Phase VI experiment. Wind Energy 17:461–481

    Article  ADS  Google Scholar 

  34. Bazilevs Y, Korobenko A, Deng X, Yan J (2016) FSI modeling for fatigue-damage prediction in full-scale wind-turbine blades. J Appl Mech 83(6):061010

    Article  Google Scholar 

  35. Yan J, Korobenko A, Deng X, Bazilevs Y (2016) Computational free-surface fluid-structure interaction with application to floating offshore wind turbines. Comput Fluids 141:155–174. https://doi.org/10.1016/j.compfluid.2016.03.008

    Article  MathSciNet  Google Scholar 

  36. Ravensbergen M, Bayram AM, Korobenko A (2020) The actuator line method for wind turbine modelling applied in a variational multiscale framework. Comput Fluids 201:104465. https://doi.org/10.1016/j.compfluid.2020.104465

    Article  MathSciNet  Google Scholar 

  37. Kozak N, Rajanna MR, Wu MCH, Murugan M, Bravo L, Ghoshal A, Hsu M-C, Bazilevs Y (2020) Optimizing gas turbine performance using the surrogate management framework and high-fidelity flow modeling. Energies 13:4283

    Article  Google Scholar 

  38. Bazilevs Y, Takizawa K, Wu MCH, Kuraishi T, Avsar R, Xu Z, Tezduyar TE (2021) Gas turbine computational flow and structure analysis with isogeometric discretization and a complex-geometry mesh generation method. Comput Mech 67:57–84. https://doi.org/10.1007/s00466-020-01919-w

    Article  MathSciNet  Google Scholar 

  39. Zhu Q, Yan J (2021) A moving-domain CFD solver in FEniCS with applications to tidal turbine simulations in turbulent flows. Comput Math Appl 81:532–546

    Article  MathSciNet  Google Scholar 

  40. Yan J, Korobenko A, Tejada-Martinez AE, Golshan R, Bazilevs Y (2017) A new variational multiscale formulation for stratified incompressible turbulent flows. Comput Fluids 158:150–156. https://doi.org/10.1016/j.compfluid.2016.12.004

    Article  MathSciNet  CAS  Google Scholar 

  41. Ravensbergen M, Helgedagsrud TA, Bazilevs Y, Korobenko A (2020) A variational multiscale framework for atmospheric turbulent flows over complex environmental terrains. Comput Methods Appl Mech Eng 368:113182. https://doi.org/10.1016/j.cma.2020.113182

    Article  ADS  MathSciNet  Google Scholar 

  42. Helgedagsrud TA, Bazilevs Y, Mathisen KM, Oiseth OA (2019) ALE-VMS methods for wind-resistant design of long-span bridges. J Wind Eng Ind Aerodyn 191:143–153. https://doi.org/10.1016/j.jweia.2019.06.001

    Article  Google Scholar 

  43. Augier B, Yan J, Korobenko A, Czarnowski J, Ketterman G, Bazilevs Y (2015) Experimental and numerical FSI study of compliant hydrofoils. Comput Mech 55:1079–1090. https://doi.org/10.1007/s00466-014-1090-5

    Article  Google Scholar 

  44. Zhu Q, Xu F, Xu S, Hsu M-C, Yan J (2020) An immersogeometric formulation for free-surface flows with application to marine engineering problems. Comput Methods Appl Mech Eng 361:112748

    Article  ADS  MathSciNet  Google Scholar 

  45. Yan J, Deng X, Korobenko A, Bazilevs Y (2017) Free-surface flow modeling and simulation of horizontal-axis tidal-stream turbines. Comput Fluids 158:157–166. https://doi.org/10.1016/j.compfluid.2016.06.016

    Article  MathSciNet  Google Scholar 

  46. Zhu Q, Yan J, Tejada-Martínez A, Bazilevs Y (2020) Variational multiscale modeling of Langmuir turbulent boundary layers in shallow water using isogeometric analysis. Mech Res Commun 108:103570. https://doi.org/10.1016/j.mechrescom.2020.103570

    Article  Google Scholar 

  47. Yan J, Lin SS, Bazilevs Y, Wagner G (2019) Isogeometric analysis of multi-phase flows with surface tension and with application to dynamics of rising bubbles. Comput Fluids 179:777–789

    Article  MathSciNet  CAS  Google Scholar 

  48. Cen H, Zhou Q, Korobenko A (2021) Variational multiscale framework for cavitating flows. Comput Fluids 214:104765. https://doi.org/10.1016/j.compfluid.2020.104765

    Article  Google Scholar 

  49. Zhao Z, Zhu Q, Yan J (2021) A thermal multi-phase flow model for directed energy deposition processes via a moving signed distance function. Comput Methods Appl Mech Eng 373:113518

    Article  ADS  MathSciNet  Google Scholar 

  50. Zhu Q, Liu Z, Yan J (2021) Machine learning for metal additive manufacturing: predicting temperature and melt pool fluid dynamics using physics-informed neural networks. Comput Mech 67:619–635. https://doi.org/10.1007/s00466-020-01952-9

    Article  MathSciNet  Google Scholar 

  51. Wang C, Wu MCH, Xu F, Hsu M-C, Bazilevs Y (2017) Modeling of a hydraulic arresting gear using fluid-structure interaction and isogeometric analysis. Comput Fluids 142:3–14. https://doi.org/10.1016/j.compfluid.2015.12.004

    Article  MathSciNet  Google Scholar 

  52. Codoni D, Moutsanidis G, Hsu M-C, Bazilevs Y, Johansen C, Korobenko A (2021) Stabilized methods for high-speed compressible flows: toward hypersonic simulations. Comput Mech 67:785–809. https://doi.org/10.1007/s00466-020-01963-6

    Article  MathSciNet  Google Scholar 

  53. Kamensky D, Hsu M-C, Schillinger D, Evans JA, Aggarwal A, Bazilevs Y, Sacks MS, Hughes TJR (2015) An immersogeometric variational framework for fluid–structure interaction: application to bioprosthetic heart valves. Comput Methods Appl Mech Eng 284:1005–1053

    Article  ADS  MathSciNet  PubMed  Google Scholar 

  54. Xu F, Johnson EL, Wang C, Jafari A, Yang C-H, Sacks MS, Krishnamurthy A, Hsu M-C (2021) Computational investigation of left ventricular hemodynamics following bioprosthetic aortic and mitral valve replacement. Mech Res Commun 112:103604. https://doi.org/10.1016/j.mechrescom.2020.103604

    Article  PubMed  Google Scholar 

  55. Tezduyar TE, Takizawa K, Moorman C, Wright S, Christopher J (2010) Space-time finite element computation of complex fluid–structure interactions. Int J Numer Meth Fluids 64:1201–1218. https://doi.org/10.1002/fld.2221

    Article  Google Scholar 

  56. Xu S, Gao B, Lofquist A, Fernando M, Hsu M-C, Sundar H, Ganapathysubramanian B (2020) An octree-based immersogeometric approach for modeling inertial migration of particles in channels. Comput Fluids 214:104764

    Article  MathSciNet  Google Scholar 

  57. Tezduyar TE, Takizawa K (2019) Space-time computations in practical engineering applications: a summary of the 25-year history. Comput Mech 63:747–753. https://doi.org/10.1007/s00466-018-1620-7

    Article  Google Scholar 

  58. Takizawa K, Tezduyar TE, Mochizuki H, Hattori H, Mei S, Pan L, Montel K (2015) Space-time VMS method for flow computations with slip interfaces (ST-SI). Math Models Methods Appl Sci 25:2377–2406. https://doi.org/10.1142/S0218202515400126

    Article  MathSciNet  Google Scholar 

  59. Korobenko A, Bazilevs Y, Takizawa K, Tezduyar TE (2018) Recent advances in ALE-VMS and ST-VMS computational aerodynamic and FSI analysis of wind turbines. In: Tezduyar TE (ed) Frontiers in computational fluid–structure interaction and flow simulation: research from lead investigators under forty – 2018, modeling and simulation in science, engineering and technology. Springer, pp 253–336. ISBN 978-3-319-96468-3. https://doi.org/10.1007/978-3-319-96469-0_7

  60. Bazilevs Y, Takizawa K, Tezduyar TE, Hsu M-C, Otoguro Y, Mochizuki H, Wu MCH (2020) ALE and space–time variational multiscale isogeometric analysis of wind turbines and turbomachinery. In: Grama A, Sameh A (eds) Parallel algorithms in computational science and engineering, modeling and simulation in science, engineering and technology. Springer, pp 195–233. ISBN 978-3-030-43735-0. https://doi.org/10.1007/978-3-030-43736-7_7

  61. Otoguro Y, Mochizuki H, Takizawa K, Tezduyar TE (2020) Space-time variational multiscale isogeometric analysis of a tsunami-shelter vertical-axis wind turbine. Comput Mech 66:1443–1460. https://doi.org/10.1007/s00466-020-01910-5

    Article  MathSciNet  Google Scholar 

  62. Bazilevs Y, Takizawa K, Tezduyar TE, Korobenko A, Kuraishi T, Otoguro Y (2023) Computational aerodynamics with isogeometric analysis. J Mech 39:24–39. https://doi.org/10.1093/jom/ufad002

    Article  Google Scholar 

  63. Otoguro Y, Takizawa K, Tezduyar TE (2018) A general-purpose NURBS mesh generation method for complex geometries. In: Tezduyar TE (ed) Frontiers in computational fluid–structure interaction and flow simulation: research from lead investigators under forty—2018, Modeling and Simulation in Science, Engineering and Technology. Springer, pp 399–434. ISBN 978-3-319-96468-3. https://doi.org/10.1007/978-3-319-96469-0_10

  64. Komiya K, Kanai T, Otoguro Y, Kaneko M, Hirota K, Zhang Y, Takizawa K, Tezduyar TE, Nohmi M, Tsuneda T, Kawai M, Isono M (2019) Computational analysis of flow-driven string dynamics in a pump and residence time calculation. IOP conference series earth and environmental science 240:062014. https://doi.org/10.1088/1755-1315/240/6/062014

    Article  Google Scholar 

  65. Takizawa K, Tezduyar TE (2016) New directions in space–time computational methods. In: Bazilevs Y, Takizawa K (eds) Advances in computational fluid–structure interaction and flow simulation: new methods and challenging computations, modeling and simulation in science, engineering and technology. Springer, , pp 159–178. ISBN 978-3-319-40825-5. https://doi.org/10.1007/978-3-319-40827-9_13

  66. Kuraishi T, Takizawa K, Tezduyar TE (2018) Space–time computational analysis of tire aerodynamics with actual geometry, road contact and tire deformation. In: Tezduyar TE (ed) Frontiers in computational fluid–structure interaction and flow simulation: research from lead investigators under forty – 2018, modeling and simulation in science, engineering and technology. Springer, , 337–376. ISBN 978-3-319-96468-3, https://doi.org/10.1007/978-3-319-96469-0_8

  67. Kuraishi T, Takizawa K, Tezduyar TE (2019) Tire aerodynamics with actual tire geometry, road contact and tire deformation. Comput Mech 63:1165–1185. https://doi.org/10.1007/s00466-018-1642-1

    Article  MathSciNet  Google Scholar 

  68. Kuraishi T, Takizawa K, Tezduyar TE (2019) Space-time computational analysis of tire aerodynamics with actual geometry, road contact, tire deformation, road roughness and fluid film. Comput Mech 64:1699–1718. https://doi.org/10.1007/s00466-019-01746-8

    Article  Google Scholar 

  69. Takizawa K, Bazilevs Y, Tezduyar TE, Korobenko A (2020) Variational multiscale flow analysis in aerospace, energy and transportation technologies. In: Grama A, Sameh A (eds) Parallel algorithms in computational science and engineering, modeling and simulation in science, engineering and technology. Springer, , pp 235–280. ISBN 978-3-030-43735-0, https://doi.org/10.1007/978-3-030-43736-7_8

  70. Tezduyar TE, Takizawa K, Kuraishi T (2022) Space–time computational FSI and flow analysis: 2004 and beyond. In: Aldakheel F, Hudobivnik B, Soleimani M, Wessels H, Weissenfels C, Marino M (eds) Current trends and open problems in computational mechanics. Springer, pp 537–544. ISBN 978-3-030-87312-7, https://doi.org/10.1007/978-3-030-87312-7_52

  71. Kuraishi T, Yamasaki S, Takizawa K, Tezduyar TE, Xu Z, Kaneko R (2022) Space-time isogeometric analysis of car and tire aerodynamics with road contact and tire deformation and rotation. Comput Mech 70:49–72. https://doi.org/10.1007/s00466-022-02155-0

    Article  MathSciNet  Google Scholar 

  72. Kuraishi T, Terahara T, Takizawa K, Tezduyar TE (2022) Computational flow analysis with boundary layer and contact representation: I. Tire aerodynamics with road contact. J Mech 38:77–87. https://doi.org/10.1093/jom/ufac009

    Article  Google Scholar 

  73. Kuraishi T, Xu Z, Takizawa K, Tezduyar TE, Yamasaki S (2022) High-resolution multi-domain space-time isogeometric analysis of car and tire aerodynamics with road contact and tire deformation and rotation. Comput Mech 70:1257–1279. https://doi.org/10.1007/s00466-022-02228-0

    Article  Google Scholar 

  74. Kuraishi T, Takizawa K, Tezduyar TE, Xu Z, Yamasaki S, Kaneko R (2023) Multiscale space–time isogeometric analysis of car and tire aerodynamics with road contact and tire deformation: full-domain computation to high-resolution tire-domain computations. In: Tezduyar TE (ed) Frontiers in computational fluid-structure interaction and flow simulation: research from lead investigators under forty – 2023, Modeling and Simulation in Science, Engineering and Technology, Springer, pp 255–307. https://doi.org/10.1007/978-3-031-36942-1_9

  75. Tezduyar TE, Takizawa K, Bazilevs Y (2024) Isogeometric analysis in computation of complex-geometry flow problems with moving boundaries and interfaces. Math Models Methods. 34:7–56. https://doi.org/10.1142/S0218202524400013

  76. Kuraishi T, Takizawa K, Tezduyar TE (2019) Space–time isogeometric flow analysis with built-in Reynolds-equation limit. Math Models Methods Appl Sci 29:871–904. https://doi.org/10.1142/S0218202519410021

    Article  MathSciNet  Google Scholar 

  77. Takizawa K, Tezduyar TE, Kuraishi T, Tabata S, Takagi H (2016) Computational thermo-fluid analysis of a disk brake. Comput Mech 57:965–977. https://doi.org/10.1007/s00466-016-1272-4

    Article  MathSciNet  Google Scholar 

  78. Takizawa K, Tezduyar TE, Buscher A, Asada S (2014) Space–time interface-tracking with topology change (ST-TC). Comput Mech 54:955–971. https://doi.org/10.1007/s00466-013-0935-7

    Article  MathSciNet  Google Scholar 

  79. Takizawa K, Tezduyar TE, Buscher A (2015) Space-time computational analysis of MAV flapping-wing aerodynamics with wing clapping. Comput Mech 55:1131–1141. https://doi.org/10.1007/s00466-014-1095-0

    Article  Google Scholar 

  80. Takizawa K, Bazilevs Y, Tezduyar TE (2022) Mesh moving methods in flow computations with the space–time and arbitrary Lagrangian–Eulerian methods. J Adv Eng Comput 6:85–112. https://doi.org/10.55579/jaec.202262.377

    Article  Google Scholar 

  81. Takizawa K, Montes D, Fritze M, McIntyre S, Boben J, Tezduyar TE (2013) Methods for FSI modeling of spacecraft parachute dynamics and cover separation. Math Models Methods Appl Sci 23:307–338. https://doi.org/10.1142/S0218202513400058

    Article  MathSciNet  Google Scholar 

  82. Takizawa K, Montes D, McIntyre S, Tezduyar TE (2013) Space-time VMS methods for modeling of incompressible flows at high Reynolds numbers. Math Models Methods Appl Sci 23:223–248. https://doi.org/10.1142/s0218202513400022

    Article  MathSciNet  Google Scholar 

  83. Kanai T, Takizawa K, Tezduyar TE, Tanaka T, Hartmann A (2019) Compressible-flow geometric-porosity modeling and spacecraft parachute computation with isogeometric discretization. Comput Mech 63:301–321. https://doi.org/10.1007/s00466-018-1595-4

    Article  MathSciNet  Google Scholar 

  84. Takizawa K, Tezduyar TE, Terahara T, Sasaki T (2018) Heart valve flow computation with the space–time slip interface topology change (ST-SI-TC) method and isogeometric analysis (IGA). In: Wriggers P, Lenarz T (eds) Biomedical technology: modeling, experiments and simulation, Lecture Notes in Applied and Computational Mechanics. Springer, pp 77–99. ISBN 978-3-319-59547-4, https://doi.org/10.1007/978-3-319-59548-1_6

  85. Takizawa K, Tezduyar TE, Terahara T, Sasaki T (2017) Heart valve flow computation with the integrated space–time VMS, slip interface, topology change and isogeometric discretization methods. Comput Fluids 158:176–188. https://doi.org/10.1016/j.compfluid.2016.11.012

    Article  MathSciNet  Google Scholar 

  86. Takizawa K, Tezduyar TE, Uchikawa H, Terahara T, Sasaki T, Shiozaki K, Yoshida A, Komiya K, Inoue G (2018) Aorta flow analysis and heart valve flow and structure analysis. In: Tezduyar TE (ed) Frontiers in computational fluid–structure interaction and flow simulation: research from lead investigators under forty – 2018, modeling and simulation in science, engineering and technology. Springer, pp 29–89. https://doi.org/10.1007/978-3-319-96469-0_2

  87. Hughes TJR, Takizawa K, Bazilevs Y, Tezduyar TE, Hsu M-C (2020) Computational cardiovascular analysis with the variational multiscale methods and isogeometric discretization. In: Grama A, Sameh A (eds) Parallel algorithms in computational science and engineering, modeling and simulation in science, engineering and technology. Springer, pp 151–193. ISBN 978-3-030-43735-0, https://doi.org/10.1007/978-3-030-43736-7_6

  88. Terahara T, Takizawa K, Tezduyar TE, Bazilevs Y, Hsu M-C (2020) Heart valve isogeometric sequentially-coupled FSI analysis with the space–time topology change method. Comput Mech 65:1167–1187. https://doi.org/10.1007/s00466-019-01813-0

    Article  MathSciNet  Google Scholar 

  89. Terahara T, Takizawa K, Tezduyar TE, Tsushima A, Shiozaki K (2020) Ventricle-valve-aorta flow analysis with the space–time isogeometric discretization and topology change. Comput Mech 65:1343–1363. https://doi.org/10.1007/s00466-020-01822-4

    Article  MathSciNet  Google Scholar 

  90. Takizawa K, Terahara T, Tezduyar TE (2022) Space–time flow computation with contact between the moving solid surfaces. In: Aldakheel F, Hudobivnik B, Soleimani M, Wessels H, Weissenfels C, Marino M (eds) Current trends and open problems in computational mechanics. Springer, pp 517–525. ISBN 978-3-030-87312-7, https://doi.org/10.1007/978-3-030-87312-7_50

  91. Terahara T, Kuraishi T, Takizawa K, Tezduyar TE (2022) Computational flow analysis with boundary layer and contact representation: II. Heart valve flow with leaflet contact. J Mech 38:185–194. https://doi.org/10.1093/jom/ufac013

    Article  Google Scholar 

  92. Takizawa K, Bazilevs Y, Tezduyar TE, Hsu M-C, Terahara T (2022) Computational cardiovascular medicine with isogeometric analysis. J Adv Eng Comput 6:167–199. https://doi.org/10.55579/jaec.202263.381

    Article  Google Scholar 

  93. Terahara T, Takizawa K, Tezduyar TE (2023) Heart valve computational flow analysis with boundary layer and leaflet contact representation. In: Tezduyar TE (ed) Frontiers in computational fluid–structure interaction and flow simulation: research from lead investigators under forty – 2023, Modeling and Simulation in Science, Engineering and Technology, Springer, pp 437–475. https://doi.org/10.1007/978-3-031-36942-1_13

  94. Tezduyar T, Aliabadi S, Behr M, Johnson A, Mittal S (1993) Parallel finite-element computation of 3D flows. Computer 26(10):27–36. https://doi.org/10.1109/2.237441

    Article  Google Scholar 

  95. Aydinbakar L, Takizawa K, Tezduyar TE, Kuraishi T (2021) Space-time VMS isogeometric analysis of the Taylor–Couette flow. Comput Mech 67:1515–1541. https://doi.org/10.1007/s00466-021-02004-6

    Article  MathSciNet  Google Scholar 

  96. Aydinbakar L, Takizawa K, Tezduyar TE, Matsuda D (2021) U-duct turbulent-flow computation with the ST-VMS method and isogeometric discretization. Comput Mech 67:823–843. https://doi.org/10.1007/s00466-020-01965-4

    Article  MathSciNet  Google Scholar 

  97. Tezduyar TE, Behr M, Mittal S, Johnson AA (1992) Computation of unsteady incompressible flows with the finite element methods: Space–time formulations, iterative strategies and massively parallel implementations. In: New methods in transient analysis, PVP-vol. 246/AMD-vol 143, ASME, New York, pp 7–24

  98. Takizawa K, Tezduyar TE, Avsar R (2020) A low-distortion mesh moving method based on fiber-reinforced hyperelasticity and optimized zero-stress state. Comput Mech 65:1567–1591. https://doi.org/10.1007/s00466-020-01835-z

    Article  MathSciNet  Google Scholar 

  99. Tonon P, Sanches RAK, Takizawa K, Tezduyar TE (2021) A linear-elasticity-based mesh moving method with no cycle-to-cycle accumulated distortion. Comput Mech 67:413–434. https://doi.org/10.1007/s00466-020-01941-y

    Article  MathSciNet  Google Scholar 

  100. Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry, and mesh refinement. Comput Methods Appl Mech Eng 194:4135–4195

    Article  ADS  MathSciNet  Google Scholar 

  101. Bazilevs Y, Calo VM, Zhang Y, Hughes TJR (2006) Isogeometric fluid–structure interaction analysis with applications to arterial blood flow. Comput Mech 38:310–322

    Article  MathSciNet  Google Scholar 

  102. Bazilevs Y, Hughes TJR (2008) NURBS-based isogeometric analysis for the computation of flows about rotating components. Comput Mech 43:143–150

    Article  Google Scholar 

  103. Cottrell JA, Hughes TJR, Bazilevs Y (2009) Isogeometric analysis. Toward integration of CAD and FEA. Wiley, Hoboken

    Book  Google Scholar 

  104. Takizawa K, Tezduyar TE (2014) Space-time computation techniques with continuous representation in time (ST-C). Comput Mech 53:91–99. https://doi.org/10.1007/s00466-013-0895-y

    Article  MathSciNet  Google Scholar 

  105. Bazilevs Y, Takizawa K, Tezduyar TE, Hsu M-C, Otoguro Y, Mochizuki H, Wu MCH (2020) Wind turbine and turbomachinery computational analysis with the ALE and space–time variational multiscale methods and isogeometric discretization. J Adv Eng Comput 4:1–32. https://doi.org/10.25073/jaec.202041.278

    Article  Google Scholar 

  106. Kanai T, Takizawa K, Tezduyar TE, Komiya K, Kaneko M, Hirota K, Nohmi M, Tsuneda T, Kawai M, Isono M (2019) Methods for computation of flow-driven string dynamics in a pump and residence time. Math Models Methods Appl Sci 29:839–870. https://doi.org/10.1142/S021820251941001X

    Article  MathSciNet  CAS  Google Scholar 

  107. Otoguro Y, Takizawa K, Tezduyar TE, Nagaoka K, Avsar R, Zhang Y (2019) Space–time VMS flow analysis of a turbocharger turbine with isogeometric discretization: computations with time-dependent and steady-inflow representations of the intake/exhaust cycle. Comput Mech 64:1403–1419. https://doi.org/10.1007/s00466-019-01722-2

    Article  MathSciNet  Google Scholar 

  108. Tezduyar TE, Cragin T, Sathe S, Nanna B (2007) FSI computations in arterial fluid mechanics with estimated zero-pressure arterial geometry. In: Onate E, Garcia J, Bergan P, Kvamsdal T (eds) Marine 2007. CIMNE, Barcelona, Spain

    Google Scholar 

  109. Takizawa K, Tezduyar TE, Sasaki T (2018) Estimation of element-based zero-stress state in arterial FSI computations with isogeometric wall discretization. In: Wriggers P, Lenarz T (eds) Biomedical technology: modeling, experiments and simulation, Lecture Notes in Applied and Computational Mechanics, Springer, pp 101–122. ISBN 978-3-319-59547-4, https://doi.org/10.1007/978-3-319-59548-1_7

  110. Takizawa K, Tezduyar TE, Sasaki T (2017) Aorta modeling with the element-based zero-stress state and isogeometric discretization. Comput Mech 59:265–280. https://doi.org/10.1007/s00466-016-1344-5

    Article  MathSciNet  Google Scholar 

  111. Sasaki T, Takizawa K, Tezduyar TE (2019) Aorta zero-stress state modeling with T-spline discretization. Comput Mech 63:1315–1331. https://doi.org/10.1007/s00466-018-1651-0

    Article  MathSciNet  Google Scholar 

  112. Sasaki T, Takizawa K, Tezduyar TE (2019) Medical-image-based aorta modeling with zero-stress-state estimation. Comput Mech 64:249–271. https://doi.org/10.1007/s00466-019-01669-4

    Article  MathSciNet  Google Scholar 

  113. Takizawa K, Bazilevs Y, Tezduyar TE, Hsu M-C (2019) Computational cardiovascular flow analysis with the variational multiscale methods. J Adv Eng Comput 3:366–405. https://doi.org/10.25073/jaec.201932.245

    Article  Google Scholar 

  114. Takizawa K, Tezduyar TE, Sasaki T (2019) Isogeometric hyperelastic shell analysis with out-of-plane deformation mapping. Comput Mech 63:681–700. https://doi.org/10.1007/s00466-018-1616-3

    Article  MathSciNet  Google Scholar 

  115. Taniguchi Y, Takizawa K, Otoguro Y, Tezduyar TE (2022) A hyperelastic extended Kirchhoff–Love shell model with out-of-plane normal stress: I. Out-of-plane deformation. Comput Mech 70:247–280. https://doi.org/10.1007/s00466-022-02166-x

    Article  MathSciNet  Google Scholar 

  116. Taniguchi Y, Takizawa K, Otoguro Y, Tezduyar TE (2023) An extended Kirchhoff–Love shell model with out-of-plane normal stress: Out-of-plane deformation. In: Tezduyar TE (ed) Frontiers in computational fluid–structure interaction and flowsimulation: research from lead investigators under forty – 2023, Modeling and Simulation in Science, Engineering and Technology, Springer, pp 389–435. https://doi.org/10.1007/978-3-031-36942-1_12

  117. Bazilevs Y, Hsu M-C, Kiendl J, Benson DJ (2012) A computational procedure for pre-bending of wind turbine blades. Int J Numer Meth Eng 89:323–336

    Article  Google Scholar 

  118. Bazilevs Y, Deng X, Korobenko A, di Scalea FL, Todd MD, Taylor SG (2015) Isogeometric fatigue damage prediction in large-scale composite structures driven by dynamic sensor data. J Appl Mech 82:091008

    Article  Google Scholar 

  119. Kiendl J, Hsu M-C, Wu MCH, Reali A (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Comput Methods Appl Mech Eng 291:280–303

    Article  ADS  MathSciNet  Google Scholar 

  120. Hsu M-C, Wang C, Herrema AJ, Schillinger D, Ghoshal A, Bazilevs Y (2015) An interactive geometry modeling and parametric design platform for isogeometric analysis. Comput Math Appl 70:1481–1500

    Article  MathSciNet  Google Scholar 

  121. Herrema AJ, Wiese NM, Darling CN, Ganapathysubramanian B, Krishnamurthy A, Hsu M-C (2017) A framework for parametric design optimization using isogeometric analysis. Comput Methods Appl Mech Eng 316:944–965

    Article  ADS  MathSciNet  Google Scholar 

  122. Benzaken J, Herrema AJ, Hsu M-C, Evans JA (2017) A rapid and efficient isogeometric design space exploration framework with application to structural mechanics. Comput Methods Appl Mech Eng 316:1215–1256

    Article  ADS  MathSciNet  Google Scholar 

  123. Kamensky D, Xu F, Lee C-H, Yan J, Bazilevs Y, Hsu M-C (2018) A contact formulation based on a volumetric potential: application to isogeometric simulations of atrioventricular valves. Comput Methods Appl Mech Eng 330:522–546

    Article  ADS  MathSciNet  PubMed  Google Scholar 

  124. Herrema AJ, Johnson EL, Proserpio D, Wu MCH, Kiendl J, Hsu M-C (2019) Penalty coupling of non-matching isogeometric Kirchhoff-Love shell patches with application to composite wind turbine blades. Comput Methods Appl Mech Eng 346:810–840

    Article  ADS  MathSciNet  Google Scholar 

  125. Herrema AJ, Kiendl J, Hsu M-C (2019) A framework for isogeometric-analysis-based optimization of wind turbine blade structures. Wind Energy 22:153–170

    Article  ADS  Google Scholar 

  126. Johnson EL, Hsu M-C (2020) Isogeometric analysis of ice accretion on wind turbine blades. Comput Mech 66:311–322

    Article  MathSciNet  Google Scholar 

  127. Terahara T, Takizawa K, Tezduyar TE (2023) T-splines computational membrane-cable structural mechanics with continuity and smoothness: I. Method and implementation. Comput Mech 71:657–675. https://doi.org/10.1007/s00466-022-02256-w

    Article  MathSciNet  Google Scholar 

  128. Terahara T, Takizawa K, Avsar R, Tezduyar TE (2023) T-splines computational membrane-cable structural mechanics with continuity and smoothness: II. Spacecraft parachutes. Comput Mech 71:677–686. https://doi.org/10.1007/s00466-022-02265-9

    Article  MathSciNet  Google Scholar 

  129. Wobbes E, Bazilevs Y, Kuraishi T, Otoguro Y, Takizawa K, Tezduyar TE (2023) Advanced IGA mesh generation and application to structural vibrations. In: Tezduyar TE (ed) Frontiers in computational fluid–structure interaction and flow simulation: research from lead investigators under forty – 2023, Modeling and Simulation in Science, Engineering and Technology, Springer, pp 513–531. https://doi.org/10.1007/978-3-031-36942-1_15

  130. Tezduyar TE, Osawa Y (2000) Finite element stabilization parameters computed from element matrices and vectors. Comput Methods Appl Mech Eng 190:411–430. https://doi.org/10.1016/S0045-7825(00)00211-5

    Article  ADS  Google Scholar 

  131. Tezduyar TE, Sathe S (2004) Enhanced-discretization space–time technique (EDSTT). Comput Methods Appl Mech Eng 193:1385–1401. https://doi.org/10.1016/j.cma.2003.12.029

    Article  ADS  MathSciNet  Google Scholar 

  132. Takizawa K, Otoguro Y, Tezduyar TE (2023) Variational multiscale method stabilization parameter calculated from the strain-rate tensor. Math Models Methods Appl Sci 33(8):1661–1691. https://doi.org/10.1142/S0218202523500380

    Article  MathSciNet  Google Scholar 

  133. Tezduyar TE (2001) Adaptive determination of the finite element stabilization parameters. In: Proceedings of the ECCOMAS computational fluid dynamics conference 2001 (CD-ROM), Swansea, Wales, United Kingdom

  134. Takizawa K, Ueda Y, Tezduyar TE (2019) A node-numbering-invariant directional length scale for simplex elements. Math Models Methods Appl Sci 29:2719–2753. https://doi.org/10.1142/S0218202519500581

    Article  MathSciNet  Google Scholar 

  135. Otoguro Y, Takizawa K, Tezduyar TE (2023) Element length calculation for isogeometric discretization and complex geometries, In: Tezduyar TE (ed) Frontiers in computational fluid–structure interaction and flow simulation: research from lead investigators under forty – 2023, Modeling and Simulation in Science, Engineering and Technology, Springer, pp 347–387. https://doi.org/10.1007/978-3-031-36942-1_11

  136. Moghadam ME, Bazilevs Y, Hsia T-Y, Vignon-Clementel IE, Marsden AL (2011) M. of Congenital Hearts Alliance (MOCHA), A comparison of outlet boundary treatments for prevention of backflow divergence with relevance to blood flow simulations. Comput Mech 48:277–291. https://doi.org/10.1007/s00466-011-0599-0

    Article  MathSciNet  Google Scholar 

  137. Osawa Y, Tezduyar T (1999) 3D simulation and visualization of unsteady wake flow behind a cylinder. J Visual 2:127–134. https://doi.org/10.1007/BF03181515

  138. Takizawa K, Tezduyar TE, McIntyre S, Kostov N, Kolesar R, Habluetzel C (2014) Space-time VMS computation of wind-turbine rotor and tower aerodynamics. Comput Mech 53:1–15. https://doi.org/10.1007/s00466-013-0888-x

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by International Technology Center Indo-Pacific (ITC IPAC) Contract FA520921C0010; (second author) Grant-in-Aid for Scientific Research (A) 18H04100 and 23H00477 from Japan Society for the Promotion of Science; Rice–Waseda research agreement; and (third author) Top Global University Project of Waseda University. The authors acknowledge the Texas Advanced Computing Center (TACC) at The University of Texas at Austin for providing HPC resources that helped obtain the research results reported in this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenji Takizawa.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A: Stabilization parameters and element lengths

Appendix A: Stabilization parameters and element lengths

The stabilization parameter \(\tau _{\textrm{SUPS}}\) is mostly from [29]:

$$\begin{aligned} \tau _{\textrm{SUPS}}&= \left( \tau _{\textrm{SUGN12}}^{-2} + \tau _{\textrm{SUGN3}}^{-2} + \tau _{\textrm{SUGN4}}^{-2}\right) ^{-\frac{1}{2}}. \end{aligned}$$
(2)

The first two components are given as

$$\begin{aligned} \tau _{\textrm{SUGN12}}^{-2}&= \begin{bmatrix} 1 \\ \textbf{u}\\ \end{bmatrix} \begin{bmatrix} 1 \\ \textbf{u}\\ \end{bmatrix} : \textbf{G}^\textrm{ST} \end{aligned}$$
(3)

and

$$\begin{aligned} \tau _{\textrm{SUGN3}}^{-1}&= \nu \textbf{r}\textbf{r}:\textbf{G}, \end{aligned}$$
(4)

where \(\textbf{r}\) is the solution-gradient direction:

$$\begin{aligned} \textbf{r}&= \frac{\pmb {\nabla }\left\| \textbf{u}\right\| }{\left\| \pmb {\nabla }\left\| \textbf{u}\right\| \right\| }. \end{aligned}$$
(5)

Here \(\textbf{G}\) and \(\textbf{G}^\textrm{ST}\) are the space-only and ST element metric tensors:

(6)
(7)

where

$$\begin{aligned} \hat{\textbf{Q}}= & {} \textbf{Q} \cdot \textbf{D}^{-1}, \end{aligned}$$
(8)
$$\begin{aligned} \hat{\textbf{Q}}^\textrm{ST}= & {} \textbf{Q}^\textrm{ST} \cdot \left( \textbf{D}^\textrm{ST}\right) ^{-1}. \end{aligned}$$
(9)

The space-only and ST Jacobian tensors are

$$\begin{aligned} \textbf{Q}= & {} \frac{\partial \textbf{x}}{\partial \pmb {\xi }}, \end{aligned}$$
(10)
$$\begin{aligned} \textbf{Q}^\textrm{ST}= & {} \begin{bmatrix} \frac{\partial t}{\partial \theta } &{} \frac{\partial t}{\partial \pmb {\xi }} \\ \frac{\partial \textbf{x}}{\partial \theta } &{} \textbf{Q} \\ \end{bmatrix} , \end{aligned}$$
(11)

and \(\textbf{D}\) and \(\textbf{D}^\textrm{ST}\) represent the transformation tensors relating the integration and “preferred” parametric spaces (see [10]). The tensor \(\textbf{D}^\textrm{ST}\) is given as

(12)

With that, we can express Eqs. (6) and (7) as

(13)
(14)

The definitions used for \(D_\theta \) and \(\textbf{D}\) play an important role, especially in higher-order IGA discretization [9, 10] and simplex elements [134].

The third component, originating from [6], is defined as

$$\begin{aligned} \tau _{\textrm{SUGN4}}= \left\| \pmb {\nabla }\textbf{u}^h\right\| _F^{-1} , \end{aligned}$$
(15)

where \(\Vert \cdot \Vert _F\) represents the Frobenius norm.

The stabilization parameter \( \nu _{\textrm{LSIC}}\) is from [138]:

$$\begin{aligned} \nu _{\textrm{LSIC}}&= \frac{h^2_\textrm{LSIC}}{\tau _{\textrm{SUPS}}}, \end{aligned}$$
(16)

where the element length \(h_\textrm{LSIC}\) is typically set equal to the minimum element length:

$$\begin{aligned} h_\textrm{MIN} = 2 \left( \max _{\textbf{r}} \left( \textbf{r} \textbf{r} : \textbf{G} \right) \right) ^{-\frac{1}{2}} . \end{aligned}$$
(17)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Takizawa, K. & Tezduyar, T.E. High-resolution 3D computation of time-periodic long-wake flows with the Carrier-Domain Method and Space–Time Variational Multiscale method with isogeometric discretization. Comput Mech (2024). https://doi.org/10.1007/s00466-023-02419-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00466-023-02419-3

Keywords

Navigation