Skip to main content
Log in

A comparison of outlet boundary treatments for prevention of backflow divergence with relevance to blood flow simulations

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

Simulation divergence due to backflow is a common, but not fully addressed, problem in three-dimensional simulations of blood flow in the large vessels. Because backflow is a naturally occurring physiologic phenomenon, careful treatment is necessary to realistically model backflow without artificially altering the local flow dynamics. In this study, we quantitatively compare three available methods for treatment of outlets to prevent backflow divergence in finite element Navier–Stokes solvers. The methods examined are (1) adding a stabilization term to the boundary nodes formulation, (2) constraining the velocity to be normal to the outlet, and (3) using Lagrange multipliers to constrain the velocity profile at all or some of the outlets. A modification to the stabilization method is also discussed. Three model problems, a short and long cylinder with an expansion, a right-angle bend, and a patient-specific aorta model, are used to evaluate and quantitatively compare these methods. Detailed comparisons are made to evaluate robustness, stability characteristics, impact on local and global flow physics, computational cost, implementation effort, and ease-of-use. The results show that the stabilization method offers a promising alternative to previous methods, with reduced effect on both local and global hemodynamics, improved stability, little-to-no increase in computational cost, and elimination of the need for tunable parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bove EL, Migliavacca F, de Leval MR, Balossino R, Pennati G, Lloyd TR, Khambadkone S, Hsia TY, Dubini G (2008) Use of mathematic modeling to compare and predict hemodynamic effects of the modified blalock-taussig and right ventricle-pulmonary artery shunts for hypoplastic left heart syndrome. J Thorac Cardiovasc Surg 136(2): 312–320.e2

    Article  Google Scholar 

  2. Migliavacca F, Balossino R, Pennati G, Dubini G, Hsia TY, de Leval MR, Bove EL (2006) Multiscale modelling in biofluidynamics: application to reconstructive paediatric cardiac surgery. J Biomech 39(6): 1010–1020

    Article  Google Scholar 

  3. Lagana K, Dubini G, Migliavacca F, Pietrabissa R, Pennati G, Veneziani A, Quarteroni A (2002) Multiscale modelling as a tool to prescribe realistic boundary conditions for the study of surgical procedures. Biorheology 39: 359–364

    Google Scholar 

  4. Urquiza SA, Blanco PJ, Vnere MJ, Feijo RA (2006) Multidimensional modelling for the carotid artery blood flow. Comput Meth Appl Mech Eng 195(33–36): 4002–4017

    Article  MATH  Google Scholar 

  5. Vignon-Clementel IE, Figueroa CA, Jansen KE, Taylor CA (2006) Outflow boundary conditions for three-dimensional finite element modeling of blood flow and pressure in arteries. Comput Meth Appl Mech Eng 195(29–32): 3776–3796

    Article  MathSciNet  MATH  Google Scholar 

  6. Blanco PJ, Feijo RA, Urquiza SA (2007) A unified variational approach for coupling 3d-1d models and its blood flow applications. Comput Meth Appl Mech Eng 196(41–44): 4391–4410

    Article  MATH  Google Scholar 

  7. Heywood JG, Rannacher R, Turek S (1996) Artificial boundaries and flux and pressure conditions for the incompressible Navier–Stokes equations. Int J Numer Methods Fluids 22(5): 325–352

    Article  MathSciNet  MATH  Google Scholar 

  8. Formaggia L, Gerbeau JF, Nobile F, Quarteroni A (2002) Numerical treatment of defective boundary conditions for the Navier–Stokes equations. SIAM J Numer Anal 40: 376–401

    Article  MathSciNet  MATH  Google Scholar 

  9. Formaggia L, Veneziani A, Vergara C (2008) A new approach to numerical solution of defective boundary valve problems in incompressible fluid dynamics. SIAM J Numer Anal 46(6): 2769–2794

    Article  MathSciNet  MATH  Google Scholar 

  10. Taylor CA, Hughes TJR, Zarins CK (1998) Finite element modeling of blood flow in arteries. Comput Methods Appl Mech Eng 158(1–2): 155–196

    Article  MathSciNet  MATH  Google Scholar 

  11. Taylor CA, Cheng CP, Espinosa LA, Tang BT, Parker D, Herfkens RJ (2002) In vivo quantification of blood flow and wall shear stress in the human abdominal aorta during lower limb exercise. Ann Biomed Eng 30: 402–408

    Article  Google Scholar 

  12. Lagan K, Balossino R, Migliavacca F, Pennati G, Bove EL, de Leval MR, Dubini G (2005) Multiscale modeling of the cardiovascular system: application to the study of pulmonary and coronary perfusions in the univentricular circulation. J Biomech 38(5): 1129–1141

    Article  Google Scholar 

  13. Marsden AL, Vignon-Clementel IE, Chan F, Feinstein JA, Taylor CA (2007) Effects of exercise and respiration on hemodynamic efficiency in CFD simulations of the total cavopulmonary connection. Ann Biomed Eng 35: 250–263

    Article  Google Scholar 

  14. Pekkan K, Dasi LP, Nourparvar P, Yerneni S, Tobita K, Fogel MA, Keller B, Yoganathan A (2008) In vitro hemodynamic investigation of the embryonic aortic arch at late gestation. J Biomech 41(8): 1697–1706

    Article  Google Scholar 

  15. Pekkan K, Dur O, Sundareswaran K, Kanter K, Fogel M, Yoganathan A, Undar A (2008) Neonatal aortic arch hemodynamics and perfusion during cardiopulmonary bypass. J Biomech Eng 130(6): 061012

    Article  Google Scholar 

  16. Tezduyar TE, Ramakrishnan S, Sathe S (2008) Stabilized formulations for incompressible flows with thermal coupling. Int J Numer Methods Fluids 57: 1189–1209

    Article  MathSciNet  MATH  Google Scholar 

  17. Tezduyar TE, Takizawa K, Moorman C, Wright S, Christopher J (2010) Space-time finite element computation of complex fluid-structure interactions. Int J Numer Methods Fluids 64: 1201–1218

    Article  MATH  Google Scholar 

  18. de Zelicourt D, Ge L, Wang C, Sotiropoulos F, Gilmanov A, Yoganathan A (2009) Flow simulations in arbitrarily complex cardiovascular anatomies - an unstructured cartesian grid approach. Comput Fluids 38(9): 1749–1762

    Article  MATH  Google Scholar 

  19. Marsden AL, Feinstein JA, Taylor CA (2008) A computational framework for derivative-free optimization of cardiovascular geometries. Comput Methods Appl Mech Eng 197(21–24): 1890–1905

    Article  MathSciNet  MATH  Google Scholar 

  20. Borazjani I, Ge L, Sotiropoulos F (2010) High-resolution fluid-structure interaction simulations of flow through a bi-leaflet mechanical heart valve in an anatomic aorta. Ann Biomed Eng 38: 326–344

    Article  Google Scholar 

  21. Vignon-Clementel IE (2006) A Coupled Multidomain Method for Computational Modeling of Blood Flow. PhD thesis, Stanford

  22. Bazilevs Y, Gohean JR, Hughes TJR, Moser RD, Zhang Y (2009) Patient-specific isogeometric fluid-structure interaction analysis of thoracic aortic blood flow due to implantation of the Jarvik 2000 left ventricular assist device. Comput Methods Appl Mech Eng 198(45–46): 3534–3550

    Article  MathSciNet  MATH  Google Scholar 

  23. Kim HJ, Figueroa CA, Hughes TJR, Jansen KE, Taylor CA (2009) Augmented lagrangian method for constraining the shape of velocity profiles at outlet boundaries for three-dimensional finite element simulations of blood flow. Comput Meth Appl Mech Eng 198(45–46): 3551–3566

    Article  MathSciNet  MATH  Google Scholar 

  24. Brooks AN, Hughes TJR (1982) Streamline upwind/petrov-galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier–Stokes equations. Comput Methods Appl Mech Eng 32(1–3): 199–259

    Article  MathSciNet  MATH  Google Scholar 

  25. Tezduyar TE (2003) Computation of moving boundaries and interfaces and stabilization parameters. Int J Numer Methods Fluids 43(5): 555–575

    Article  MathSciNet  MATH  Google Scholar 

  26. Bazilevs Y, Calo VM, Cottrell JA, Hughes TJR, Reali A, Scovazzi G (2007) Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows. Comput Methods Appl Mech Eng 197(1–4): 173–201

    Article  MathSciNet  MATH  Google Scholar 

  27. Whiting CH, Jansen KE (2001) A stabilized finite element method for the incompressible Navier–Stokes equations using a hierarchical basis. Int J Numer Methods Fluids 35(1): 93–116

    Article  MATH  Google Scholar 

  28. Franca LP, Frey SL (1992) Stabilized finite element methods: II. the incompressible Navier–Stokes equations. Comput Methods Appl Mech Eng 99(2–3): 209–233

    Article  MathSciNet  MATH  Google Scholar 

  29. Tezduyar TE, Mittal S, Ray SE, Shih R (1992) Incompressible flow computations with stabilized bilinear and linear equal-order-interpolation velocity–pressure elements. Comput Methods Appl Mech Eng 95: 221–242

    Article  MATH  Google Scholar 

  30. Jansen KE, Whiting CH, Hulbert GM (2000) A generalized-[alpha] method for integrating the filtered Navier–Stokes equations with a stabilized finite element method. Comput Methods Appl Mech Eng 190(3–4): 305–319

    MathSciNet  MATH  Google Scholar 

  31. Shakib F, Hughes TJR, Johan Z (1989) A multi-element group preconditioned gmres algorithm for nonsymmetric systems arising in finite element analysis. Comput Methods Appl Mech Eng 75(1–3): 415–456

    Article  MathSciNet  MATH  Google Scholar 

  32. Gresho PM, Sani RL (2000) Incompressible flow and the finite element method, vol 2. Wiley

  33. Schmidt JP, Delp SL, Sherman MA, Taylor CA, Pande VS, Altman RB (2008) The Simbios National Center: systems biology in motion. In: Proceedings of the IEEE, vol 96, issue 8, pp 1266–1280

  34. Vignon-Clementel IE, Marsden AL, Feinstein JA (2010) A primer on computational simulation in congenital heart disease for the clinician. Progress Pediatr Cardiol 30(1–2): 3–13

    Article  Google Scholar 

  35. Vignon-Clementel IE, Figueroa CA, Jansen KE, Taylor CA (2010) Outflow boundary conditions for three-dimensional simulations of non-periodic blood flow and pressure fields in deformable arteries. Comput Methods Biomech Biomed Eng 13(5): 625–640

    Article  Google Scholar 

  36. Migliavacca F, Pennati G, Dubini G, Fumero R, Pietrabissa R, Urcelay G, Bove EL, Hsia TY, De Leval MR (2001) Modeling of the norwood circulation: effects of shunt size, vascular resistances, and heart rate. Am J Physiol Heart Circ Physiol 280: H2076–H2086

    Google Scholar 

  37. Kim H, Vignon-Clementel IE, Coogan J, Figueroa C, Jansen KE, Taylor CA (2010) Patient-specific modeling of blood flow and pressure in human coronary arteries. Ann Biomed Eng 38: 3195–3209

    Article  Google Scholar 

  38. Sahni O, Muller J, Jansen KE, Shephard MS, Taylor CA (2006) Efficient anisotropic adaptive discretization of the cardiovascular system. Comput Methods Appl Mech Eng 195(41–43): 5634–5655

    Article  MathSciNet  MATH  Google Scholar 

  39. Bazilevs Y, Calo VM, Zhang Y, Hughes TJR (2006) Isogeometric fluid-structure interaction analysis with applications to arterial blood flow. Comput Mech 38: 310–322

    Article  MathSciNet  MATH  Google Scholar 

  40. Bazilevs Y, Calo VM, Hughes TJR, Zhang Y (2008) Isogeometric fluid-structure interaction: theory, algorithms, and computations. Comput Mech 43: 3–37

    Article  MathSciNet  MATH  Google Scholar 

  41. Takizawa K, Moorman C, Wright S, Purdue J, McPhail T, Chen PR, Warren J, Tezduyar TE (2011) Patient-specific arterial fluid-structure interaction modeling of cerebral aneurysms. Int J Numer Methods Fluids 65: 308–323

    Article  MATH  Google Scholar 

  42. Tezduyar TE, Takizawa K, Brummer T, Chen PR (2011) Space–time fluid–structure interaction modeling of patient-specific cerebral aneurysms. Int J Numer Methods Biomed Eng 27. doi:10.1002/cnm.1433

Download references

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to Yuri Bazilevs.

Additional information

MOCHA Investigators: Edward Bove MD and Adam Dorfman MD (University of Michigan, USA); Andrew Taylor MD, Alessandro Giardini MD, Sachin Khambadkone MD, Marc de Leval MD, Silvia Schievano PhD, and T-Y Hsia MD (Institute of Child Health, UK); G. Hamilton Baker MD and Anthony Hlavacek (Medical University of South Carolina, USA); Francesco Migliavacca PhD, Giancarlo Pennati PhD, and Gabriele Dubini PhD (Politecnico di Milano, Italy); Richard Figliola PhD and John McGregor PhD (Clemson University, USA); Alison Marsden PhD (University of California, San Diego, USA); Irene Vignon-Clementel (National Institute of Research in Informatics and Automation, France).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Esmaily Moghadam, M., Bazilevs, Y., Hsia, TY. et al. A comparison of outlet boundary treatments for prevention of backflow divergence with relevance to blood flow simulations. Comput Mech 48, 277–291 (2011). https://doi.org/10.1007/s00466-011-0599-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-011-0599-0

Keywords

Navigation