Skip to main content
Log in

Optimization of fermentation conditions for the production of γ-aminobutyric acid by Lactobacillus hilgardii GZ2 from traditional Chinese fermented beverage system

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

γ-Aminobutyric acid (GABA) is a crucial neurotransmitter with wide application prospects. In this study, we focused on a GABA-producing strain from a traditional Chinese fermented beverage system. Among the six isolates, Lactobacillus hilgardii GZ2 exhibited the greatest ability to produce GABA in the traditional Chinese fermented beverage system. To increase GABA production, we optimized carbon sources, nitrogen sources, temperature, pH, and monosodium glutamate and glucose concentrations and conducted fed-batch fermentation. The best carbon and nitrogen sources for GABA production and cell growth were glucose, yeast extract and tryptone. Gradual increases in GABA were observed as the glucose and monosodium glutamate concentrations increased from 10 g/L to 50 g/L. During fed-batch fermentation, lactic acid was used to maintain the pH at 5.56, and after feeding with 0.03 g/mL glucose and 0.4 g/mL sodium glutamate for 72 h, the GABA yield reached 239 g/L. This novel high-GABA-producing strain holds great potential for the industrial production of GABA, as well as the development of health-promoting functional foods and medical fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Data will be made available on request.

References

  1. Sarasa SB, Mahendran R, Muthusamy G, Thankappan B, Selta DRF, Angayarkanni J (2019) A brief review on the non-protein amino acid, gamma-amino butyric acid (GABA): its production and role in microbes. Curr Microbiol 77:534–544

    Article  PubMed  Google Scholar 

  2. Cui Y, Miao K, Niyaphorn S, Qu X (2020) Production of gamma-aminobutyric acid from lactic acid bacteria: a systematic review. Int J Mol Sci 21:1–21

    Article  CAS  Google Scholar 

  3. Han Dongoh H-YK, Lee H-J, Shim I, HahM DH (2007) Wound healing activity of gamma-aminobutyric acid in rats. J Microbiol Biotechnol 17(10):1661–1669

    CAS  PubMed  Google Scholar 

  4. Ueno F, Nakajima S, Iwata Y, Honda S, Torres-Carmona E, Mar W, Tsugawa S, Truong P, Plitman E, Noda Y, Mimura M, Sailasuta N, Mikkelsen M, Edden RAE, De Luca V, Remington G, Gerretsen P, Graff-Guerrero A (2022) Gamma-aminobutyric acid (GABA) levels in the midcingulate cortex and clozapine response in patients with treatment-resistant schizophrenia: A proton magnetic resonance spectroscopy ((1) H-MRS) study. Psychiatry Clin Neurosci 76:587–594

    Article  CAS  PubMed  Google Scholar 

  5. Paolo Fusar-Poli CUC, Arango C, Berk M, Patel V, Ioannidis JPA (2021) Preventive psychiatry: a blueprint for improving the mental health of young people. World Psychiatry 20:200–221

    Article  PubMed  PubMed Central  Google Scholar 

  6. Suk-Heung O-JM, Chan-Ho Oh (2003) γ-Aminobutyric acid (GABA) content of selected uncooked foods. Nutraceuticals & Food 8:75–78

    Google Scholar 

  7. Villegas JM, Brown L, Savoy de Giori G, Hebert EM (2016) Optimization of batch culture conditions for GABA production by Lactobacillus brevis CRL 1942, isolated from quinoa sourdough. LWT-Food Sci Technol 67:22–26

    Article  CAS  Google Scholar 

  8. Ratanaburee A, Kantachote D, Charernjiratrakul W, Sukhoom A (2013) Selection of γ-aminobutyric acid-producing lactic acid bacteria and their potential as probiotics for use as starter cultures in Thai fermented sausages (Nham). Int J Food Sci Technol 48:1371–1382

    Article  CAS  Google Scholar 

  9. Mancini A, Carafa I, Franciosi E, Nardin T, Bottari B, Larcher R, Tuohy KM (2019) In vitro probiotic characterization of high GABA producing strain Lactobacilluas brevis DSM 32386 isolated from traditional “wild” Alpine cheese. Ann Microbiol 69:1435–1443

    Article  CAS  Google Scholar 

  10. Haixing Li DG, Cao Y, Hengyi Xu (2008) A high γ-aminobutyric acid-producing Lactobacillus brevis isolated from Chinese traditional paocai. Ann Microbiol 58(4):649–653

    Article  Google Scholar 

  11. Gong LC, Ren C, Xu Y (2019) Deciphering the crucial roles of transcriptional regulator GadR on gamma-aminobutyric acid production and acid resistance in Lactobacillus brevis. Microb Cell Fact 18:1–12

    Article  CAS  Google Scholar 

  12. Haixing Li TQ, Huang G, Cao Y (2010) Production of gamma-aminobutyric acid by Lactobacillus brevis NCL912 using fed-batch fermentation. Microb Cell Fact 9:85

    Article  PubMed  PubMed Central  Google Scholar 

  13. Zhao AQ, Hu XQ, Pan L, Wang XY (2015) Isolation and characterization of a gamma-aminobutyric acid producing strain Lactobacillus buchneri WPZ001 that could efficiently utilize xylose and corncob hydrolysate. Appl Microbiol Biotechnol 99:3191–3200

    Article  CAS  PubMed  Google Scholar 

  14. Poojary MM, Dellarosa N, Roohinejad S, Koubaa M, Tylewicz U, Gomez-Galindo F, Saraiva JA, Rosa MD, Barba FJ (2017) Influence of innovative processing on gamma-aminobutyric acid (GABA) contents in plant food materials. Compr Rev Food Sci Food Saf 16:895–905

    Article  CAS  PubMed  Google Scholar 

  15. Xu Y, Zhao J, Liu X, Zhang C, Zhao Z, Li X, Sun B (2022) Flavor mystery of Chinese traditional fermented Baijiu: the great contribution of ester compounds. Food Chem 369:130920

    Article  CAS  PubMed  Google Scholar 

  16. Wei Y, Zou W, Shen CH, Yang JG (2020) Basic flavor types and component characteristics of Chinese traditional liquors: A review. J Food Sci 85:4096–4107

    Article  CAS  PubMed  Google Scholar 

  17. Tu W, Cao X, Cheng J, Li L, Zhang T, Wu Q, Xiang P, Shen C, Li Q (2022) Chinese Baijiu: the perfect works of microorganisms. Front Microbiol 13:919044

    Article  PubMed  PubMed Central  Google Scholar 

  18. Zhu C, Cheng Y, Shi Q, Ge X, Yang Y, Huang Y (2023) Metagenomic analyses reveal microbial communities and functional differences between Daqu from seven provinces. Food Res Int. https://doi.org/10.3390/foods13020203

  19. Cai W, Wang Y, Ni H, Liu Z, Liu J, Zhong J, Hou Q, Shan C, Yang X, Guo Z (2021) Diversity of microbiota, microbial functions, and flavor in different types of low-temperature Daqu. Food Res Int 150:110734

    Article  CAS  PubMed  Google Scholar 

  20. Guido Capitani DDB, Aurizi C, Gut H, Bossa F, Grutter MG (2003) Crystal structure and functional analysis of Escherichia coli glutamate decarboxylase. EMBO 22(16):4027–4037

    Article  Google Scholar 

  21. Kadir SAW-M, W.A.Q.R., Mohammad, R., Lim, S.A.H., Mohammed, A. S., Saari, N. (2016) Evaluation of commercial soy sauce koji strains of Aspergillus oryzae for gamma-aminobutyric acid (GABA) production. J Ind Microbiol Biotechnol 43:1387–1395

    Article  Google Scholar 

  22. Xiong Q, Xu Z, Xu L, Yao Z, Li S, Xu H (2017) Efficient Production of gamma-GABA using recombinant E. coli expressing glutamate decarboxylase (GAD) derived from eukaryote Saccharomyces cerevisiae. Appl Biochem Biotechnol 183:1390–1400

    Article  CAS  PubMed  Google Scholar 

  23. Ham S, Bhatia SK, Gurav R, Choi YK, Jeon JM, Yoon JJ, Choi KY, Ahn J, Kim HT, Yang YH (2022) Gamma aminobutyric acid (GABA) production in Escherichia coli with pyridoxal kinase (pdxY) based regeneration system. Enzyme Microb Technol 155:109994

    Article  CAS  PubMed  Google Scholar 

  24. Komatsuzaki N, Shima J, Kawamoto S, Momose H, Kimura T (2005) Production of γ-aminobutyric acid (GABA) by Lactobacillus paracasei isolated from traditional fermented foods. Food Microbiol 22:497–504

    Article  CAS  Google Scholar 

  25. Redruello B, Saidi Y, Sampedro L, Ladero V, Del Rio B, Alvarez MA (2021) GABA-producing Lactococcus lactis strains isolated from camel’s milk as starters for the production of GABA-enriched cheese. Foods. https://doi.org/10.3390/foods10030633

  26. Do TBT, Nguyen TA, Vandamme P (2022) Isolation, screening, identification and optimization of culture parameters to produce γ-aminobutyric acid by Lactiplantibacillus pentosus R13, an isolate from Ruoc (fermented shrimp paste). Appl Food Biotechnol 9:1–9

    Google Scholar 

  27. Sun TS, Zhao SP, Wang HK, Cai CK, Chen YF, Zhang HP (2008) ACE-inhibitory activity and gamma-aminobutyric acid content of fermented skim milk by Lactobacillus helveticus isolated from Xinjiang koumiss in China. Eur Food Res Technol 228:607–612

    Article  Google Scholar 

  28. Park SJ, Kim DH, Kang HJ, Shin M, Yang S-Y, Yang J, Jung YH (2021) Enhanced production of γ-aminobutyric acid (GABA) using Lactobacillus plantarum EJ2014 with simple medium composition. LWT-Food Sci Technol 137:110443

    Article  CAS  Google Scholar 

  29. Somkuti GA, Renye JA Jr, Steinberg DH (2012) Molecular analysis of the glutamate decarboxylase locus in Streptococcus thermophilus ST110. J Ind Microbiol Biotechnol 39:957–963

    Article  CAS  PubMed  Google Scholar 

  30. Kittibunchakul S, Yuthaworawit N, Whanmek K, Suttisansanee U, Santivarangkna C (2021) Health beneficial properties of a novel plant-based probiotic drink produced by fermentation of brown rice milk with GABA-producing Lactobacillus pentosus isolated from Thai pickled weed. J Funct Foods 86:104710

    Article  CAS  Google Scholar 

  31. Lim SM, Im DS (2009) Screening and characterization of probiotic lactic acid bacteria isolated from Korean fermented foods. J Microbiol Biotechnol 19:178–186

    Article  CAS  PubMed  Google Scholar 

  32. Rochelle PA, Fry JC, John Parkes R, Weightman AJ (1992) DNA extraction for 16S rRNA gene analysis to determine genetic diversity in deep sediment communities. FEMS Microbiol Lett 100:59–65

    Article  CAS  PubMed  Google Scholar 

  33. Rea K, Cremers TIFH, Westerink BHC (2005) HPLC conditions are critical for the detection of GABA by microdialysis. J Neur 94:672–679

    CAS  Google Scholar 

  34. Liu SQ, Skinner-Nemec KA, Leathers TD (2008) Lactobacillus buchneri strain NRRL B-30929 converts a concentrated mixture of xylose and glucose into ethanol and other products. J Ind Microbiol Biotechnol 35:75–81

    Article  CAS  PubMed  Google Scholar 

  35. Chun-Lin Lee W-PC, Wang J-J, Pan T-M (2007) A simple and rapid approach for removing citrinin while retaining monacolin K in red mold rice. J Agric Food Chem 55:11101–11108

    Article  PubMed  Google Scholar 

  36. Jia M, Zhu Y, Wang L, Sun T, Pan H, Li H (2022) pH Auto-sustain-based fermentation supports efficient gamma-aminobutyric acid production by Lactobacillus brevis CD0817. Fermentation 8:1–12

    Article  Google Scholar 

  37. Papadimitriou K, Alegria A, Bron PA, de Angelis M, Gobbetti M, Kleerebezem M, Lemos JA, Linares DM, Ross P, Stanton C, Turroni F, van Sinderen D, Varmanen P, Ventura M, Zuniga M, Tsakalidou E, Kok J (2016) Stress physiology of lactic acid bacteria. Microbiol Mol Biol Rev 80:837–890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Aspmo SI, Horn SJ, Eijsink VG (2005) Use of hydrolysates from Atlantic cod (Gadus morhua L.) viscera as a complex nitrogen source for lactic acid bacteria. FEMS Microbiol Lett 248:65–68

    Article  CAS  PubMed  Google Scholar 

  39. Huang Y, Su L, Wu J (2016) Pyridoxine supplementation improves the activity of recombinant glutamate decarboxylase and the enzymatic production of gama-aminobutyric acid. PLoS ONE 11:e0157466

    Article  PubMed  PubMed Central  Google Scholar 

  40. Bearson SBB, Foster JW (1997) Acid stress responses in enterobacteria FEMS Microbiol. Lett 147(2):173–180

    CAS  Google Scholar 

  41. Sahab NRM, Subroto E, Balia RL, Utama GL (2020) gamma-Aminobutyric acid found in fermented foods and beverages: current trends. Heliyon 6:e05526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kanklai J, Somwong TC, Rungsirivanich P, Thongwai N (2020) Screening of GABA-producing lactic acid bacteria from Thai fermented foods and probiotic potential of Levilactobacillus brevis F064A for GABA-fermented mulberry juice production. Microorganisms 9:1–17

    Article  Google Scholar 

  43. Yogeswara IBA, Kittibunchakul S, Rahayu ES, Domig KJ, Haltrich D, Nguyen TH (2020) Microbial production and enzymatic biosynthesis of γ-Aminobutyric acid (GABA) using Lactobacillus plantarum FNCC 260 isolated from Indonesian fermented foods. Processes 9:1–17

    Article  Google Scholar 

  44. Gharehyakheh S (2021) Gamma aminobutyric acid (GABA) production using Lactobacillus sp. Makhdzir Naser-1 (GQ451633) in the cherry-kefir beverage. J Food Process Preserv 45:1–11

    Article  Google Scholar 

  45. Pakdeeto A, Phuengjayaem S, Arayakarn T, Phitchayaphon C, Tungkajiwangkoon S, Tanasupawat S (2022) Identification of gamma-aminobutyric acid (GABA)-producing lactic acid bacteria from plant-based Thai fermented foods and genome analysis of Lactobacillus brevis GPB7-4. ScienceAsia. https://doi.org/10.2306/scienceasia1513-1874.2022.037

    Article  Google Scholar 

  46. Wang D, Wang Y, Lan H, Wang K, Zhao L, Hu Z (2021) Enhanced production of γ-aminobutyric acid in litchi juice fermented by Lactobacillus plantarum HU-C2W. Food Biosci 42:101155

    Article  CAS  Google Scholar 

  47. Rayavarapu B, Tallapragada P, Usha MS (2019) Statistical optimization of γ-aminobutyric acid production by response surface methodology and artificial neural network models using Lactobacillus fermentum isolated from palm wine. Biocatal Agric Biotechnol. https://doi.org/10.1016/j.bcab.2019.101362

    Article  Google Scholar 

  48. Alizadeh Behbahani B, Jooyandeh H, Falah F, Vasiee A (2020) Gamma-aminobutyric acid production by Lactobacillus brevis A3: optimization of production, antioxidant potential, cell toxicity, and antimicrobial activity. Food Sci Nutr 8:5330–5339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Zarei F (2020) Production of gamma-aminobutyric acid (Gaba) in whey protein drink during fermentation by Lactobacillus plantarum. J. Microbiol. Biotechnol Food Sci 9:1087–1092

    CAS  Google Scholar 

Download references

Acknowledgements

We thank Prof. Xu Yan and Dr. Ren Cong (Jiangnan University, China) for providing relevant experimental materials.

Funding

This study was partially supported by the National Natural Science Foundation of China (32101905), the Jiangsu Agricultural Science and Technology Innovation Fund (CX(20)2029) and the Open Project Program of the Key Laboratory of Brewing Molecular Engineering of China Light Industry (BME-202203).

Author information

Authors and Affiliations

Authors

Contributions

Validation, formal analysis, data curation, writing-original draft preparation, Xiao-Zhou Zou; conceptualization, methodology, validation, formal analysis, data curation, writing-original draft preparation, writing-review and editing, supervision, project administration, Lu-Chan Gong; validation, methodology, formal analysis, Ting-Ting Li; validation, formal analysis, Shu-Yi Lv; conceptualization, methodology, writing-review and editing, writing-original draft preparation, supervision, administration, Jun Wang. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Jun Wang.

Ethics declarations

Conflict of interest

All authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 335 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zou, XZ., Gong, LC., Li, TT. et al. Optimization of fermentation conditions for the production of γ-aminobutyric acid by Lactobacillus hilgardii GZ2 from traditional Chinese fermented beverage system. Bioprocess Biosyst Eng 47, 957–969 (2024). https://doi.org/10.1007/s00449-024-03028-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-024-03028-x

Keywords

Navigation