Skip to main content
Log in

Molecular analysis of the glutamate decarboxylase locus in Streptococcus thermophilus ST110

  • Original Paper
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

γ-aminobutyric acid (GABA) is generated from glutamate by the action of glutamic acid decarboxylase (GAD) and characterized by hypotensive, diuretic, and tranquilizing effects in humans and animals. The production of GABA by lactic acid starter bacteria would enhance the functionality of fermented dairy foods including cheeses and yogurt. The survey of 42 strains of the yogurt starter culture Streptococcus thermophilus by PCR techniques indicated the presence of a glutamate decarboxylase gene (gadB) in 16 strains. DNA sequencing data indicated that the GAD/GABA antiporter locus (gadB/gadC) in GAD+ S. thermophilus strains is flanked by transposase elements (5′ and 3′) and positioned between the luxS (5′) and the HD-superfamily hydrolase genes (3′). The PCR amplification product of a ca. 2-kb genomic fragment that included the gadB and its putative promoter region was inserted into a shuttle vector, which was used to transform Escherichia coli DH5α. Subsequently, the recombinant plasmid pMEU5a-1/gadB (7.24 kb) was electrotransformed into the GAD-negative strain S. thermophilus ST128. The ST128 transformants carrying the plasmid-encoded gadB produced functional GAD enzyme as evidenced by the conversion of glutamate to GABA at a rate similar to strains with the gadB/gadC operon located on the chromosome. The results demonstrated the potential to impart to non-GABA-producing strains of S. thermophilus and other lactic acid bacteria the GAD+ phenotype that improves their appeal in possible applications in the development of health-promoting functional foods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Adeghate E, Ponery AS (2004) GABA in the endocrine pancreas: cellular localization and function in normal and diabetic rats. Tissue Cell 34:1–6

    Article  Google Scholar 

  2. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    PubMed  CAS  Google Scholar 

  3. Coderre PE, Somkuti GA (1999) Cloning and expression of the pediocin operon in Streptococcus thermophilus and other lactic fermentation bacteria. Curr Microbiol 39:295–301

    Article  PubMed  CAS  Google Scholar 

  4. Cotter PD, Hill C (2003) Surviving the acid test: responses of Gram-positive bacteria to low pH. Microbiol Mol Biol Rev 67:429–453

    Article  PubMed  CAS  Google Scholar 

  5. Gilbreth SE, Somkuti GA (2005) Thermophilin 110: a bacteriocin of Streptococcus thermophilus ST110. Curr Microbiol 51:175–182

    Article  PubMed  CAS  Google Scholar 

  6. Hagiwara H, Seki T, Ariga T (2004) The effect of pre-germinated brown rice intake on blood glucose and PAI-1 levels in streptozotocin-induced diabetic rats. Biosci Biotechnol Biochem 68:444–447

    Article  PubMed  CAS  Google Scholar 

  7. Higuchi T, Hayashi H, Abe K (1997) Exchange of glutamate and γ-aminobutyrate in a Lactobacillus strain. J Bacteriol 179:3362–3364

    PubMed  CAS  Google Scholar 

  8. Hiraga K, Ueno Y, Oda K (2008) Glutamate decarboxylase from Lactobacillus brevis: activation by ammonium sulfate. Biosci Biotechnol Biochem 72:1299–1306

    Article  PubMed  CAS  Google Scholar 

  9. Huang J, Mei LH, Wu H, Liu DQ (2007) Biosynthesis of γ-aminobutyric acid (GABA) using immobilized whole cells of Lactobacillus brevis. World J Microbiol Biotechnol 23:865–871

    Article  CAS  Google Scholar 

  10. Inoue K, Shirai T, Ochiai H, Kasao M, Hayakawa K, Kimura M, Sansawa H (2003) Blood-pressure lowering effect of a novel fermented milk containing gamma-aminobutyric acid (GABA) in mild hypertensives. Eur J Clin Nutr 57:490–495

    Article  PubMed  CAS  Google Scholar 

  11. Jakobs C, Jaeken J, Gibson KM (1993) Inherited disorders of GABA metabolism. J Inher Metab Dis 16:704–715

    Article  PubMed  CAS  Google Scholar 

  12. Komatsuzaki N, Shima J, Kawamoto S, Momose H, Kimura T (2005) Production of γ-aminobutyric acid (GABA) by Lactobacillus paracasei isolated from traditional fermented foods. Food Microbiol 22:497–504

    Article  CAS  Google Scholar 

  13. Komatsuzaki N, Nakamura T, Kimura T, Shima J (2008) Characterization of glutamate decarboxylase from a high γ-aminobutyric acid (GABA)-producer, Lactobacillus paracasei. Biosci Biotechnol Biochem 72:278–285

    Article  PubMed  CAS  Google Scholar 

  14. Li H, Cao Y (2010) Lactic acid bacterial cell factories for gamma-aminobutyric acid. Amino Acids 39:1107–1116

    Article  PubMed  CAS  Google Scholar 

  15. Li H, Qui T, Gao D, Cao Y (2010) Medium optimization for production of gamma-aminobutyric acid by Lactobacillus brevis NCL912. Amino Acids 38:1439–1445

    Article  PubMed  CAS  Google Scholar 

  16. Lin Q, Yang S, Lu F, Bie X, Jiao Y, Zou X (2009) Cloning and expression of glutamate decarboxylase gene from Streptococcus thermophilus Y2. J Gen Appl Microbiol 55:305–310

    Article  PubMed  CAS  Google Scholar 

  17. Nomura M, Nakajima I, Fujita Y, Kobayashi M, Kimoto H, Suzuki I, Aso H (1999) Lactococcus lactis contains only one glutamate decarboxylase gene. Microbiology 145:1375–1380

    Article  PubMed  CAS  Google Scholar 

  18. Park KB, Oh SH (2007) Cloning, sequencing and expression of a novel glutamate decarboxylase gene from a newly isolated lactic acid bacterium, Lactobacillus brevis OPK-3. Bioresour Technol 98(312):319

    Google Scholar 

  19. Renye JA, Somkuti GA (2008) Cloning of milk-derived bioactive peptides in Streptococcus thermophilus. Biotechnol Lett 30:723–730

    Article  PubMed  CAS  Google Scholar 

  20. Sanders JW, Leehouts K, Burghoom J, Brands J, Venema G, Kok J (1998) A chloride-inducible acid resistance mechanism in Lactococcus lactis and its regulation. Mol Microbiol 27:299–310

    Article  PubMed  CAS  Google Scholar 

  21. Schuller H, Al-Wadei HAN, Majidi M (2008) Gamma-aminobutyric acid, a potential tumor suppressor for small airway-derived lung adenocarcinoma. Carcinogenesis 29:1979–1985

    Article  PubMed  CAS  Google Scholar 

  22. Small PC, Waterman SR (1998) Acid stress, anaerobiosis and gadCB: lessons from Lactococcus lactis and Escherichia coli. Trends Microbiol 6:214–216

    Article  PubMed  CAS  Google Scholar 

  23. Solaiman DKY, Somkuti GA (1993) Shuttle vectors developed from Streptococcus thermophilus native plasmid. Plasmid 30:67–78

    Article  PubMed  CAS  Google Scholar 

  24. Somkuti GA, Steinberg DH (1988) Genetic transformation of Streptococcus thermophilus by electroporation. Biochemie 70:579–585

    Article  CAS  Google Scholar 

  25. Somkuti GA, Dominiecki ME, Steinberg DH (1998) Permeabilization of Streptococcus thermophilus and Lactobacillus delbrueckii subsp. bulgaricus with ethanol. Curr Microbiol 36:202–206

    Article  PubMed  CAS  Google Scholar 

  26. Somkuti GA, Solaiman DKY (1997) STP2201, a chromosomal promoter sequence of Streptococcus thermophilus. Curr Microbiol 35:180–185

    Article  PubMed  CAS  Google Scholar 

  27. Stougaard P, Molin S (1981) Vertical dye-buoyant density gradients for rapid analysis and preparation of plasmid DNA. Anal Biochem 118:191–193

    Article  PubMed  CAS  Google Scholar 

  28. Sun Z, Chen X, Wang J, Zhao W, Shao Y, Wu L, Zhou Z, Sun T, Wang L, Meng L, Zhang H, Chen W (2011) Complete genome sequence of Streptococcus thermophilus strain ND03. J Bacteriol 193:793–794

    Article  PubMed  CAS  Google Scholar 

  29. Tujioka K, Ohshumi M, Horie K, Kim M, Hayase K, Yokogoshi H (2009) Dietary γ-aminobutyric acid affects the brain protein synthesis rate in ovariectomized female rats. J Nutr Sci Vitaminol 55:75–80

    Article  PubMed  CAS  Google Scholar 

  30. Ueno H (2000) Enzymatic and structural aspects of glutamate decarboxylase. J Mol Catal B Enzym 10:67–79

    Article  CAS  Google Scholar 

  31. Yang SY, Yu B, Lu ZX, Bie XM, Lin Q, Sun LJ (2008) Optimization of culture conditions for production of glutamate decarboxylase by Streptococcus salivarius ssp. thermophilus. J Chem Technol Biotechnol 83:389–392

    Article  CAS  Google Scholar 

  32. Yang SY, Lu EX, Lu ZX, Bie XM, Jiao Y, Sun LJ, Wu B (2008) Production of γ-aminobutyric acid by Streptococcus thermophilus subsp. thermophilus Y2 under submerged fermentation. Amino Acids 34:473–478

    Article  PubMed  CAS  Google Scholar 

  33. Zhang G, Brown AW (1997) The rapid determination of γ-aminobutyric acid. Phytochemistry 44:1007–1009

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Jaileene Hernandez for providing technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. A. Somkuti.

Additional information

Mention of trade names or commercial products in this publication is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the U.S. Department of Agriculture.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Somkuti, G.A., Renye, J.A. & Steinberg, D.H. Molecular analysis of the glutamate decarboxylase locus in Streptococcus thermophilus ST110. J Ind Microbiol Biotechnol 39, 957–963 (2012). https://doi.org/10.1007/s10295-012-1114-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-012-1114-0

Keywords

Navigation