Skip to main content

Advertisement

Log in

Lactobacillus buchneri strain NRRL B-30929 converts a concentrated mixture of xylose and glucose into ethanol and other products

  • Original Paper
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

Lactobacillus buchneri strain NRRL B-30929 was isolated from a fuel ethanol production facility. This heterofermentative, facultative anaerobe can utilize xylose as a sole carbon source and tolerates up to 12% ethanol. Carbohydrate utilization (API, Biomerieux) and Phenotype Microarrays™ (PM, Biolog) analyses indicated that the strain is able to metabolize a broad spectrum of carbon sources including various monosaccharides (C5 and C6), disaccharides and oligosaccharides, with better rates under anaerobic conditions. In pH-controlled bioreactors, the bacterium consumed xylose and glucose simultaneously at high concentrations (125 g L−1, pH 6.0). The major fermentation products were lactate (52 g L−1), acetate (26 g L−1) and ethanol (12 g L−1). The strain ferments glucose alone (pH 4.0) into lactate and ethanol with a molar ratio of 1.03:1. This strain will be further explored via genetic engineering for potential applications in biomass conversion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Adesogan AT, Salawu MB, Ross AB, Davies DR, Brooks AE (2003) Effect of Lactobacillus buchneri, Lactobacillus fermentum, Leuconostoc mesenteroides inoculants, or a chemical additive on the fermentation, aerobic stability, and nutritive value of crimped wheat grains. J Dairy Sci 86:1789–1796

    CAS  Google Scholar 

  2. Contreras-Govea F, Albrecht K, Muck RE (2006) Spring yield and silage characteristics of Kura clover, winter wheat, and in mixtures. Agron J 98:781–787

    Article  Google Scholar 

  3. Dien BS, Nichols NN, Bothast RJ (2001) Recombinant Escherichia coli engineered for production of l-lactic acid from hexose and pentose sugars. J Ind Microbiol Biotechnol 27:259–264

    Article  CAS  Google Scholar 

  4. Gold RS, Meagher MM, Hutkins R, Conway T (1992) Ethanol tolerance and carbohydrate metabolism in lactobacilli. J Ind Microbiol 10:45–54

    Article  CAS  Google Scholar 

  5. Hugenholtz J (1993) Citrate metabolism in lactic acid bacteria. FEMS Microbiol Rev 12:165–178

    Article  CAS  Google Scholar 

  6. Iyer PV, Thomas S, Lee YY (2000) High-yield fermentation of pentoses into lactic acid. Appl Biochem Biotechnol 84–86:665–777

    Article  Google Scholar 

  7. Keiichi K (1976) Purification of Lactobacillus buchneri glucose 6-phosphate dehydrogenase by affinity chromatography on blue dextran-sepharose. Fac Agric 52:128–130

    Google Scholar 

  8. Kleinschmit DH, Schmidt RJ, Kung L Jr (2005) The effects of various antifungal additives on the fermentation and aerobic stability of corn silage. J Dairy Sci 88:2130–2139

    CAS  Google Scholar 

  9. Krooneman J, Faber F, Alderkamp AC, Elferink SJ, Driehuis F (2002) Lactobacillus diolivorans sp. nov., a 1,2-propanediol-degrading bacterium isolated from aerobically stable maize silage. Int J Syst Evol Microbiol 52:639–646

    CAS  Google Scholar 

  10. Kung L Jr, Ranjit NK (2001) The effect of Lactobacillus buchneri and other additives on the fermentation and aerobic stability of barley silage. J Dairy Sci 84:1149–1155

    CAS  Google Scholar 

  11. Kung L Jr, Taylor CC, Lynch MP, Neylon JM (2003) The effect of treating alfalfa with Lactobacillus buchneri 40788 on silage fermentation, aerobic stability, and nutritive value for lactating dairy cows. J Dairy Sci 86:336–343

    CAS  Google Scholar 

  12. Liu S, Saha B, Cotta M (2005) Cloning, expression, purification, and analysis of mannitol dehydrogenase gene mtlK from Lactobacillus brevis. Appl Biochem Biotechnol 121–124:391–401

    Article  Google Scholar 

  13. Maas RH, Bakker RR, Eggink G, Weusthuis RA (2006) Lactic acid production from xylose by the fungus Rhizopus oryzae. Appl Microbiol Biotechnol 72:861–868

    Article  CAS  Google Scholar 

  14. Makarova K, Slesarev A, Wolf Y, Sorokin A, Mirkin B (2006) Comparative genomics of the lactic acid bacteria. Proc Natl Acad Sci USA 103:15611–15616

    Article  Google Scholar 

  15. Matte A, Forsberg CW, Verrinder Gibbins AM (1992) Enzymes associated with metabolism of xylose and other pentoses by Prevotella ruminicola strains, Selenomonas ruminantium D, and Fibrobacter succinogenes S85. Can J Microbiol 38:370–376

    Article  CAS  Google Scholar 

  16. Mills DA, Rawsthorne H, Parker C, Tamir D, Makarova K (2005) Genomic analysis of Oenococcus oeni PSU-1 and its relevance to winemaking. FEMS Microbiol Rev 29:465–475

    Article  CAS  Google Scholar 

  17. Mital BK, Shallenberger RS, Steinkraus KH (1973) α-galactosidase activity of lactobacilli. Appl Microbiol 26:783–788

    CAS  Google Scholar 

  18. Muck RE (2004) Effects of corn silage inoculants on aerobic stability. Trans ASAE 47:1011–1016

    Google Scholar 

  19. Nishino N, Yoshida M, Shiota H, Sakaguchi E (2003) Accumulation of 1,2-propanediol and enhancement of aerobic stability in whole crop maize silage inoculated with Lactobacillus buchneri. J Appl Microbiol 94:800–807

    Article  CAS  Google Scholar 

  20. Nsereko VL, Rutherford WM, Smiley BK, Spielbauer AJ (2006) Ferulate Esterase Producing strains and methods of using same. US patent application 20060046292

  21. Picataggio SK, Zhang M, Franden MA, McMillan JD, Finkelstein M (1998) Recombinant lactobacillus for fermentation of xylose to lactic acid and lactate. US patent 5,798,237

  22. Ranjit NK, Kung L Jr (2000) The effect of Lactobacillus buchneri, Lactobacillus plantarum, or a chemical preservative on the fermentation and aerobic stability of corn silage. J Dairy Sci 83:526–535

    CAS  Google Scholar 

  23. Saier MH Jr, Ye JJ, Klinke S, Nino E (1996) Identification of an anaerobically induced phosphoenolpyruvate-dependent fructose-specific phosphotransferase system and evidence for the Embden-Meyerhof glycolytic pathway in the heterofermentative bacterium Lactobacillus brevis. J Bacteriol 178:314–316

    CAS  Google Scholar 

  24. Schutz H, Radler F (1984) Anaerobic reduction of glycerol to propanediol-1.3 by Lactobacillus brevis and Lactobacillus buchneri. Syst Appl Microbiol 5:169–78

    Google Scholar 

  25. Skinner KA, Leathers TD (2004) Bacterial contaminants of fuel ethanol production. J Ind Microbiol Biotechnol 31:401–408

    Article  CAS  Google Scholar 

  26. Somerville C (2006) The billion-ton biofuels vision. Science 312:1277

    Article  CAS  Google Scholar 

  27. Stevenson DM, Muck RE, Shinners KJ, Weimer PJ (2005) Use of real time PCR to determine population profiles of individual species of lactic acid bacteria in alfalfa silage and stored corn stover. Appl Microbiol Biotechnol, pp 1–10

  28. Tanaka K, Komiyama A, Sonomoto K, Ishizaki A, Hall SJ, Stanbury PF (2002) Two different pathways for d-xylose metabolism and the effect of xylose concentration on the yield coefficient of l-lactate in mixed-acid fermentation by the lactic acid bacterium Lactococcus lactis IO-1. Appl Microbiol Biotechnol 60:160–167

    Article  CAS  Google Scholar 

  29. Taylor CC, Ranjit NJ, Mills JA, Neylon JM, Kung L Jr (2002) The effect of treating whole-plant barley with Lactobacillus buchneri 40788 on silage fermentation, aerobic stability, and nutritive value for dairy cows. J Dairy Sci 85:1793–1800

    Article  CAS  Google Scholar 

  30. Veiga-da-Cunha M, Foster MA (1992) 1,3-Propanediol:NAD+ oxidoreductases of Lactobacillus brevis and Lactobacillus buchneri. Appl Environ Microbiol 58:2005–2010

    CAS  Google Scholar 

  31. Veiga da Cunha M, Foster MA (1992) Sugar-glycerol cofermentations in lactobacilli: the fate of lactate. J Bacteriol 174:1013–1019

    CAS  Google Scholar 

  32. Weinberg ZG, Muck RE, Weimer PJ (2003) The survival of silage inoculant lactic acid bacteria in rumen fluid. J Appl Microbiol 94:1066–1071

    Article  CAS  Google Scholar 

  33. Whitehead TR, Cotta MA (2001) Sequence analyses of a broad host-range plasmid containing ermT from a tylosin-resistant Lactobacillus sp. Isolated from swine feces. Curr Microbiol 43:17–20

    Article  CAS  Google Scholar 

  34. Wood BJB, Holzapfel WH (eds) (1995) The genera of lactic acid bacteria, vol 2. Blackie Academic & Professional, London, pp 398

  35. Yildirim M (2001) Characterization of Buchnericin LB Produced by Lactobacillus buchneri LB. Turk J Biol 25:73–82

    CAS  Google Scholar 

  36. Yildirim M (2001) Purification of Buchnericin LB Produced by Lactobacillus buchneri LB. Turk J Biol 25:59–65

    CAS  Google Scholar 

  37. Yildirim Z, Avsar YK, Yildirim M (2002) Factors affecting the adsorption of buchnericin LB, a bacteriocin produced by Lactobacillus buchneri. Microbiol Res 157:103–107

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Jacqueline Zane and Melinda S. Nunnally for their excellent technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siqing Liu.

Additional information

Names are necessary to report factually on available data; however, the USDA neither guarantees nor warrants the standard of the product, and the use of the names by USDA implies no approval of the product to the exclusion of others that may also be suitable.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, S., Skinner-Nemec, K.A. & Leathers, T.D. Lactobacillus buchneri strain NRRL B-30929 converts a concentrated mixture of xylose and glucose into ethanol and other products. J Ind Microbiol Biotechnol 35, 75–81 (2008). https://doi.org/10.1007/s10295-007-0267-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-007-0267-8

Keywords

Navigation