Skip to main content
Log in

Families of Hooke-like isotropic hyperelastic material models and their rate formulations

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

We introduce a new (HHE) family of Hooke-like isotropic hyperelastic material models associated with the Doyle–Ericksen family of strain tensors with Eulerian forms of constitutive relations (CRs). This family contains the well-known Hencky and Simo–Pister (modified neo-Hookean) isotropic hyperelastic material models. The main feature of the new family of material models is that the rate counterparts of CRs for material models from this family are simultaneously CRs for Hooke-like isotropic hypoelastic-type material models based on Eulerian continuous strain-consistent convective stress rates. Models from the new family extend the only previously known Hooke-like isotropic hypoelastic material model based on the corotational logarithmic stress rate with Hooke-like hyperelastic counterpart to an infinite number of such models based on non-corotational stress rates. In addition, we develop unified Eulerian forms of CRs and specific potential strain energies for the known families of Hill (HLIH) and Kellermann–Attard (K–A) Hooke-like isotropic hyperelastic material models. For all three families (HHE, HLIH, and K–A) of material models, new explicit basis-free (eigenprojection based) expressions for the fourth-order elasticity tensors with full symmetry are obtained. Expressions for the components of the Cauchy stress tensor versus axial stretch in the simple elongation problem are derived, and their plots for integer values of the parameter \(n=\pm 2,\pm 1, 0\) generating material models from the families considered are constructed. From an analysis of these plots, it is concluded that the Simo–Pister isotropic hyperelastic material model is the best model among those considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. For brevity, these parameters \(\lambda \) and \(\mu \) will be referred to below as the Lamé parameters regardless of whether they are used in CRs for material models with infinitesimal or finite strains.

  2. A common practice to introduce elasticity laws into CRs for additive elasto-plasticity is to use CRs for Hooke-like isotropic hypoelasticity based on some corotational stress rate (for a more detailed analysis of these CRs, see Sect. 1 in [72]). In the early development of such formulations of CRs for elasto-plastic materials, researchers used mainly the Zaremba–Jaumann stress rate (see, e.g., [5, 10, 11, 84]). As noted in Sect. 1 in [72], one of the disadvantages of using this stress rate in CRs for additive elasto-plasticity is that in the absence of inelastic strain, CRs with this stress rate do not represent a rate form of CRs for any Cauchy/Green elastic material. It has been shown [123, 124] (see also [72]) that the only Hooke-like isotropic hypoelasicity material model based on corotational stress rate whose CRs are the rate form of CRs for Green elastic material is the model with CRs (12).

  3. The family of continuous strain-consistent convective stress rates was obtained using some constraints of continuity for stress rates introduced in [22].

  4. In [73], we have developed a method to determine whether some Hooke-like hypoelastic material model is the rate form of any hyperelastic material model. This method is simpler than the general method of Bernstein (cf., [15]) includes the following steps. The first step is to establish whether this hypoelasticity model passes the test for coaxiality of conjugate stress and strain tensors (i.e., whether the necessary condition of the Cauchy elasticity is satisfied). If the model passes this test, the second step is performed which is to try to explicitly determine CRs for the Cauchy elastic material, i.e., to derive the so-called response function \(\varvec{\phi }(\textbf{V})\) or its equivalent counterpart to check its physical consistency, e.g., to check the validity of the Baker–Ericksen (B–E) inequalities [110], which are sufficient conditions for this response function to represent CRs for the Cauchy elastic material [6, 7] (it is easy check that the B–E inequalities hold for CRs (58)). If such CRs are determined, the third step is performed which is to try to find the specific potential strain energy for the material model in question. If the specific potential energy is determined, it is concluded that the hypoelastic material model is indeed the rate form of some hyperelastic material model.

  5. Hereinafter, \(\mathcal {T}^2_{\text {sym}}\subset \mathcal {T}^2\) denotes the set of all symmetric second-order tensors.

  6. Hereinafter, fourth-order tensors with both major and twice minor symmetries will be called supersymmetric (cf., [61]) or fully symmetric (cf., [39]) tensors.

  7. The number m (\(1\le m\le 3\)) will be called the eigenindex.

  8. Hereinafter, the notation \(\sum _{i\ne j=1}^{m}\) denotes the summation over \(i,j=1,\ldots , m\) and \(i\ne j\) and this summation is assumed to vanish when \(m=1\).

  9. Hill proposed the family of Lagrangian strain tensors \(\textbf{f}(\textbf{U})\) (cf., [55]); we use their Eulerian counterparts \(\textbf{f}(\textbf{V})\).

  10. This family is a subfamily of the Hill family of strain tensors. Some authors call this family of strain tensors the Seth–Hill family of strain tensors (see, e.g., [27]).

  11. Hereinafter, \(\mathcal {T}^2_{\text {skew}}\subset \mathcal {T}^2\) denotes the set of all skew-symmetric tensors.

  12. Since we assume that \(\textbf{x}(\textbf{X},t)\in C^2\) of t, it follows that \(\varvec{\ell },\textbf{d},\textbf{w},\varvec{\omega }^R\in C^0\) of t (cf., [102]).

  13. In [55] these CRs are given in Lagrangian form; in the present paper, we present alternative Eulerian expressions of CRs for models from this family.

  14. Expression (52) coincides with the expression for the tangent stiffness tensor for the Hooke-like hypoelastic isotropic material model based on the logarithmic stress rate (see Eqs. \((82)_2\), \((86)_1\), \((87)_1\), and (93) in [72]).

  15. The expression for \(\hat{W}_{\mu }^{(n)}\) was obtained in [73].

  16. In Eulerian version of CRs for the incompressible neo-Hookean isotropic hyperelastic material model, CRs have the form \(\varvec{\tau }=-p\textbf{I}+2\mu \textbf{e}^{(2)}\), where p is the hydrostatic pressure.

  17. Sometimes, the Hill stress rate is called the Biezeno–Hencky stress rate (cf., [62]).

  18. Note that CRs for additive elasto-plasticity also commonly use Eulerian tensors and these material models are implemented in FE codes using UL formulations of the SM equations (see, e.g., [4, 5, 10, 11, 81, 84]).

  19. Here \(\textbf{F}^{-T}\equiv (\textbf{F}^{-1})^T=(\textbf{F}^T)^{-1}\).

  20. The motion law (71) can only be used for compressible materials, and it is apparently difficult to implement in laboratory experiments. At the same time, this motion law makes it possible to highlight the dependence of stresses on volume changes for hyperelasticity models obtained in one way or another from hyperelasticity models for incompressible materials in the form of a generalization that takes into account material compressibility. In particular, in Sect. 7, we use the motion law (71) to evaluate the performance of some generalized (compressible) neo-Hookean material models generated by the classical incompressible neo-Hookean material model.

  21. For homogeneous deformation of a prismatic bar, equality (74) in fact reduces to the Considère (1888) condition for the instability of the deformation of a prismatic bar when the axial load on this bar reaches an extreme value (cf., [9, p. 166]).

  22. Nevertheless, it has been found [74] that HLIH material models based on the Itskov family of strain tensors (cf., [60, 61]) include such material models, in particular, the Pelzer isotropic hyperelastic material model, which can simulate engineering strains up to 150%.

  23. Hereinafter, the experimental data given in [63, 64, 108] will be referred to as gold standard experimental data.

References

  1. Adamov, A.A.: Comparative analysis of the two-constant generalizations of Hooke’s law for isotropic elastic materials at finite strains. J. Appl. Mech. Tech. Phys. 42, 890–897 (2001). https://doi.org/10.1023/A:1017969215735

    Article  MATH  Google Scholar 

  2. Anand, L.: On H. Hencky’s approximate strain-energy function for moderate deformations. J. Appl. Mech. 46(1), 78–82 (1979). https://doi.org/10.1115/1.3424532

    Article  MathSciNet  MATH  Google Scholar 

  3. Anand, L.: Moderate deformations in extension-torsion of incompressible isotropic elastic materials. J. Mech. Phys. Solids 34(3), 293–304 (1986). https://doi.org/10.1016/0022-5096(86)90021-9

    Article  Google Scholar 

  4. Bathe, K.J.: Finite Element Procedures. Prentice Hall, Upper Saddle River (1996)

    MATH  Google Scholar 

  5. Batra, R., Lear, M.: Simulation of brittle and ductile fracture in an impact loaded prenotched plate. Int. J. Fract. 126(2), 179–203 (2004). https://doi.org/10.1023/B:FRAC.0000026364.13365.71

    Article  MATH  Google Scholar 

  6. Batra, R.C.: On the coincidence of the principal axes of stress and strain in isotropic elastic bodies. Lett. Appl. Eng. Sci. 3, 435–439 (1975)

    MATH  Google Scholar 

  7. Batra, R.C.: Deformation produced by a simple tensile load in an isotropic elastic body. J. Elast. 6(1), 109–111 (1976). https://doi.org/10.1007/BF00135183

    Article  MathSciNet  MATH  Google Scholar 

  8. Batra, R.C.: Comparison of results from four linear constitutive relations in isotropic finite elasticity. Int. J. Non-Linear Mech. 36(3), 421–432 (2001). https://doi.org/10.1016/S0020-7462(00)00057-3

    Article  MATH  Google Scholar 

  9. Batra, R.C.: Elements of Continuum Mechanics. AIAA, Reston (2006)

    Book  MATH  Google Scholar 

  10. Batra, R.C., Jin, X.S.: Analysis of dynamic shear bands in porous thermally softening viscoplastic materials. Arch. Mech. 46(1–2), 13–36 (1994)

    MATH  Google Scholar 

  11. Batra, R.C., Love, B.M.: Adiabatic shear bands in functionally graded materials. J. Therm. Stresses 27(12), 1101–1123 (2004). https://doi.org/10.1080/01495730490498494

    Article  Google Scholar 

  12. Bažant, Z.P.: Finite strain generalization of small-strain constitutive relations for any finite strain tensor and additive volumetric-deviatoric split. Int. J. Solids Struct. 33(20), 2887–2897 (1996). https://doi.org/10.1016/0020-7683(96)00002-9

    Article  MATH  Google Scholar 

  13. Bažant, Z.P.: Easy-to-compute tensors with symmetric inverse approximating Hencky finite strain and its rate. J. Eng. Mater. Technol. 120(2), 131–136 (1998). https://doi.org/10.1115/1.2807001

    Article  Google Scholar 

  14. Beex, L.A.A.: Fusing the Seth-Hill strain tensors to fit compressible elastic material responses in the nonlinear regime. Int. J. Mech. Sci. 163, 105072 (2019). https://doi.org/10.1016/j.ijmecsci.2019.105072

  15. Bernstein, B.: Hypo-elasticity and elasticity. Arch. Ration. Mech. Anal. 6(1), 89–104 (1960). https://doi.org/10.1007/BF00276156

    Article  MathSciNet  MATH  Google Scholar 

  16. Bertóti, E.: A non-linear complementary energy-based constitutive model for incompressible isotropic materials. Int. J. Non-Linear Mech. 148, 104262 (2023). https://doi.org/10.1016/j.ijnonlinmec.2022.104262

  17. Bertram, A.: Elasticity and Plasticity of Large Deformations, 4th edn. Springer, Cham (2021)

    Book  MATH  Google Scholar 

  18. Billington, E.W.: Constitutive equation for a class of isotropic, perfectly elastic solids using a new measure of finite strain and corresponding stress. J. Eng. Math. 45(2), 117–134 (2003). https://doi.org/10.1023/A:1022151106085

    Article  MathSciNet  MATH  Google Scholar 

  19. Bonet, J., Wood, R.D.: Nonlinear Continuum Mechanics for Finite Element Analysis, 2nd edn. Cambridge University Press, Cambridge (2008)

    Book  MATH  Google Scholar 

  20. Bruhns, O.T.: The Prandtl-Reuss equations revisited. ZAMM J. Appl. Math. Mech./ Zeitschrift für Angewandte Mathematik und Mechanik 94(3), 187–202 (2014). https://doi.org/10.1002/zamm.201300243

    Article  MathSciNet  MATH  Google Scholar 

  21. Bruhns, O.T.: Large deformation plasticity. Acta. Mech. Sin. 36(2), 472–492 (2020). https://doi.org/10.1007/s10409-020-00926-7

    Article  MathSciNet  MATH  Google Scholar 

  22. Bruhns, O.T., Meyers, A., Xiao, H.: On non-corotational rates of Oldroyd’s type and relevant issues in rate constitutive formulations. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 460(2043), 909–928 (2004). https://doi.org/10.1098/rspa.2003.1184

    Article  MathSciNet  MATH  Google Scholar 

  23. Cao, J., Ding, X.F., Yin, Z.N., et al.: Large elastic deformations of soft solids up to failure: new hyperelastic models with error estimation. Acta Mech. 228(3), 1165–1175 (2017). https://doi.org/10.1007/s00707-016-1753-8

    Article  MathSciNet  MATH  Google Scholar 

  24. Crespo, J., Latorre, M., Montáns, F.J.: WYPIWYG hyperelasticity for isotropic, compressible materials. Comput. Mech. 59(1), 73–92 (2017). https://doi.org/10.1007/s00466-016-1335-6

    Article  MathSciNet  MATH  Google Scholar 

  25. Crisfield, MA.: Non-linear Finite Element Analysis of Solids and Structures: vol. 2. Advanced Topics. Wiley, Chichester (1997)

  26. Curnier, A.: Computational Methods in Solid Mechanics. Kluwer, Dordrecht (1994)

    Book  MATH  Google Scholar 

  27. Curnier, A., Rakotomanana, L.: Generalized strain and stress measures: critical survey and new results. Eng. Trans. 39(3–4), 461–538 (1991)

    MathSciNet  Google Scholar 

  28. Curnier, A., Zysset, P.: A family of metric strains and conjugate stresses, prolonging usual material laws from small to large transformations. Int. J. Solids Struct. 43(10), 3057–3086 (2006). https://doi.org/10.1016/j.ijsolstr.2005.06.015

    Article  MATH  Google Scholar 

  29. Dal, H., Açikgöz, K., Badienia, Y.: On the performance of isotropic hyperelastic constitutive models for rubber-like materials: a state of the art review. Appl. Mech. Rev. 73(2), 020802. https://doi.org/10.1115/1.4050978 (2021)

  30. Darijani, H.: Conjugated kinetic and kinematic measures for constitutive modeling of the thermoelastic continua. Continuum Mech. Thermodyn. 27(6), 987–1008 (2015). https://doi.org/10.1007/s00161-014-0393-2

    Article  MathSciNet  MATH  Google Scholar 

  31. Darijani, H., Naghdabadi, R.: Constitutive modeling of solids at finite deformation using a second-order stress-strain relation. Int. J. Eng. Sci. 48(2), 223–236 (2010). https://doi.org/10.1016/j.ijengsci.2009.08.006

    Article  Google Scholar 

  32. Darijani, H., Naghdabadi, R.: Kinematics and kinetics modeling of thermoelastic continua based on the multiplicative decomposition of the deformation gradient. Int. J. Eng. Sci. 62, 56–69 (2013). https://doi.org/10.1016/j.ijengsci.2012.07.001

    Article  MathSciNet  MATH  Google Scholar 

  33. Darijani, H., Naghdabadi, R., Kargarnovin, M.H.: Hyperelastic materials modelling using a strain measure consistent with the strain energy postulates. Proc. Inst. Mech. Eng. C J. Mech. Eng. Sci. 224(3), 591–602 (2010). https://doi.org/10.1243/09544062JMES1590

    Article  Google Scholar 

  34. de Borst, R., Crisfield, M.A., Remmers, J.J.C., et al.: Non-linear Finite Element Analysis of Solids and Structures, 2nd edn. Wiley, Chichester (2012)

    Book  MATH  Google Scholar 

  35. De Rosa, E., Latorre, M., Montáns, F.J.: Capturing anisotropic constitutive models with WYPiWYG hyperelasticity; and on consistency with the infinitesimal theory at all deformation levels. Int. J. Non-Linear Mech. 96, 75–92 (2017). https://doi.org/10.1016/j.ijnonlinmec.2017.08.005

    Article  Google Scholar 

  36. de Souza Neto, E.A., Peric, D., Owen, D.J.R.: Computational Methods for Plasticity: Theory and Applications. Wiley, Chichester (2008)

    Book  Google Scholar 

  37. Doyle, T.C., Ericksen, J.L.: Nonlinear elasticity. In: Dryden, H., von Karman, T. (eds.) Advances in Applied Mechanics, vol. 4, pp. 53–115. Academic Press, New York (1956). https://doi.org/10.1016/S0065-2156(08)70371-5

    Chapter  Google Scholar 

  38. Farahani, K., Bahai, H.: Hyper-elastic constitutive equations of conjugate stresses and strain tensors for the Seth-Hill strain measures. Int. J. Eng. Sci. 42(1), 29–41 (2004). https://doi.org/10.1016/S0020-7225(03)00241-6

    Article  MathSciNet  MATH  Google Scholar 

  39. Federico, S.: Covariant formulation of the tensor algebra of non-linear elasticity. Int. J. Non-Linear Mech. 47(2), 273–284 (2012). https://doi.org/10.1016/j.ijnonlinmec.2011.06.007

    Article  Google Scholar 

  40. Fitzgerald, J.E.: A tensorial Hencky measure of strain and strain rate for finite deformations. J. Appl. Phys. 51(10), 5111–5115 (1980). https://doi.org/10.1063/1.327428

    Article  Google Scholar 

  41. Flory, P.J.: Thermodynamic relations for high elastic materials. Trans. Faraday Soc. 57, 829–838 (1961). https://doi.org/10.1039/TF9615700829

    Article  MathSciNet  Google Scholar 

  42. Fung, Y.C.: Foundations of Solid Mechanics. Prentice Hall, New Jersey (1965)

    Google Scholar 

  43. Fung, Y.C., Tong, P., Chen, X.: Classical and Computational Solid Mechanics, 2nd edn. World Scientific, New Jersey (2017)

    Book  MATH  Google Scholar 

  44. Gilchrist, M.D., Murphy, J.G., Rashid, B.: Generalisations of the strain-energy function of linear elasticity to model biological soft tissue. Int. J. Non-Linear Mech. 47(2), 268–272 (2012). https://doi.org/10.1016/j.ijnonlinmec.2011.06.004

    Article  Google Scholar 

  45. Giorgi, C., Morro, A.: A thermodynamic approach to rate-type models of elastic-plastic materials. J. Elast. 147(1), 113–148 (2021). https://doi.org/10.1007/s10659-021-09871-3

    Article  MathSciNet  MATH  Google Scholar 

  46. Hackett, R.M.: Hyperelasticity Primer, 2nd edn. Springer, Cham (2018)

    Book  Google Scholar 

  47. Han, M.L., Wang, H.Y., Wang, S.Y., et al.: Exact large strain analysis for the Poynting effect of freely twisted thin-walled tubes made of highly elastic soft materials. Thin-Walled Struct. 184, 110503 (2023). https://doi.org/10.1016/j.tws.2022.110503

  48. Hartmann, S., Neff, P.: Polyconvexity of generalized polynomial-type hyperelastic strain energy functions for near-incompressibility. Int. J. Solids Struct. 40(11), 2767–2791 (2003). https://doi.org/10.1016/S0020-7683(03)00086-6

    Article  MathSciNet  MATH  Google Scholar 

  49. Hashiguchi, K., Yamakawa, Y.: Introduction to Finite Strain Theory for Continuum Elasto-Plasticity. Wiley, Hoboken (2013)

    Google Scholar 

  50. Hencky, H.: The elastic behavior of vulcanized rubber. Rubber Chem. Technol. 6(2), 217–224 (1933). https://doi.org/10.5254/1.3547545

    Article  Google Scholar 

  51. Hencky, H.: The elastic behaviour of vulcanized rubber. J. Appl. Mech. 1(2), 45–53 (1933). https://doi.org/10.1115/1.4012174

    Article  Google Scholar 

  52. Hill, R.: On uniqueness and stability in the theory of finite elastic strain. J. Mech. Phys. Solids 5(4), 229–241 (1957). https://doi.org/10.1016/0022-5096(57)90016-9

    Article  MathSciNet  MATH  Google Scholar 

  53. Hill, R.: A general theory of uniqueness and stability in elastic-plastic solids. J. Mech. Phys. Solids 6(3), 236–249 (1958). https://doi.org/10.1016/0022-5096(58)90029-2

    Article  MathSciNet  MATH  Google Scholar 

  54. Hill, R.: Some basic principles in the mechanics of solids without a natural time. J. Mech. Phys. Solids 7(3), 209–225 (1959). https://doi.org/10.1016/0022-5096(59)90007-9

    Article  MathSciNet  MATH  Google Scholar 

  55. Hill, R.: Aspects of invariance in solid mechanics. In: Yih, C.S. (ed.) Advances in Applied Mechanics, vol. 18, pp. 1–75. Academic Press, New York (1979). https://doi.org/10.1016/S0065-2156(08)70264-3

    Chapter  Google Scholar 

  56. Holzapfel, G.A.: Nonlinear Solid Mechanics: A Continuum Approach for Egineering. Wiley, Chichester (2000)

    Google Scholar 

  57. Horgan, C.O., Murphy, J.G.: A generalization of Hencky’s strain-energy density to model the large deformations of slightly compressible solid rubbers. Mech. Mater. 41(8), 943–950 (2009). https://doi.org/10.1016/j.mechmat.2009.03.001

    Article  Google Scholar 

  58. Hossain, M., Steinmann, P.: More hyperelastic models for rubber-like materials: consistent tangent operators and comparative study. J. Mech. Behav. Mater. 22(1–2), 27–50 (2013). https://doi.org/10.1515/jmbm-2012-0007

    Article  Google Scholar 

  59. Hüter, F., Rieg, F.: Extending Marlow’s general first-invariant constitutive model to compressible, isotropic hyperelastic materials. Eng. Comput. 38(6), 2631–2647 (2021). https://doi.org/10.1108/EC-05-2020-0251

    Article  Google Scholar 

  60. Itskov, M.: On the application of the additive decomposition of generalized strain measures in large strain plasticity. Mech. Res. Commun. 31(5), 507–517 (2004). https://doi.org/10.1016/j.mechrescom.2004.02.006

    Article  MATH  Google Scholar 

  61. Itskov, M.: Tensor Algebra and Tensor Analysis for Engineers (with Applications to Continuum Mechanics), 5th edn. Springer, Cham (2019)

    Book  MATH  Google Scholar 

  62. Ji, W., Waas, A.M., Bažant, Z.P.: On the importance of work-conjugacy and objective stress rates in finite deformation incremental finite element analysis. J. Appl. Mech. 80(4):041,024. https://doi.org/10.1115/1.4007828 (2013)

  63. Jones, D.F., Treloar, L.R.G.: The properties of rubber in pure homogeneous strain. J. Phys. D Appl. Phys. 8(11), 1285–1304 (1975). https://doi.org/10.1088/0022-3727/8/11/007

    Article  Google Scholar 

  64. Kawabata, S., Matsuda, M., Tei, K., et al.: Experimental survey of the strain energy density function of isoprene rubber vulcanizate. Macromolecules 14(1), 154–162 (1981). https://doi.org/10.1021/ma50002a032

    Article  Google Scholar 

  65. Kellermann, D.C., Attard, M.M.: An invariant-free formulation of neo-Hookean hyperelasticity. ZAMM J. Appl. Math. Mech./ Zeitschrift für Angewandte Mathematik und Mechanik 96(2), 233–252 (2016). https://doi.org/10.1002/zamm.201400210

    Article  MathSciNet  Google Scholar 

  66. Kellermann, D.C., Attard, M.M., O’Shea, D.J.: Fourth-order tensor algebraic operations and matrix representation in continuum mechanics. Arch. Appl. Mech. 91(12), 4631–4668 (2021). https://doi.org/10.1007/s00419-021-01926-0

    Article  Google Scholar 

  67. Korobeynikov, S., Larichkin, A.: Objective Algorithms for Integrating Hypoelastic Constitutive Relations Based on Corotational Stress Rates. Springer, Cham (2023)

    Book  Google Scholar 

  68. Korobeynikov, S.N.: Objective tensor rates and applications in formulation of hyperelastic relations. J. Elast. 93(2), 105–140 (2008). https://doi.org/10.1007/s10659-008-9166-0

    Article  MathSciNet  MATH  Google Scholar 

  69. Korobeynikov, S.N.: Families of continuous spin tensors and applications in continuum mechanics. Acta Mech. 216(1), 301–332 (2011). https://doi.org/10.1007/s00707-010-0369-7

    Article  MATH  Google Scholar 

  70. Korobeynikov, S.N.: Basis-free expressions for families of objective strain tensors, their rates, and conjugate stress tensors. Acta Mech. 229(3), 1061–1098 (2018). https://doi.org/10.1007/s00707-017-1972-7

    Article  MathSciNet  MATH  Google Scholar 

  71. Korobeynikov, S.N.: Objective symmetrically physical strain tensors, conjugate stress tensors, and Hill’s linear isotropic hyperelastic material models. J. Elast. 136(2), 159–187 (2019). https://doi.org/10.1007/s10659-018-9699-9

    Article  MathSciNet  MATH  Google Scholar 

  72. Korobeynikov, S.N.: Analysis of Hooke-like isotropic hypoelasticity models in view of applications in FE formulations. Arch. Appl. Mech. 90(2), 313–338 (2020). https://doi.org/10.1007/s00419-019-01611-3

    Article  Google Scholar 

  73. Korobeynikov, S.N.: Family of continuous strain-consistent convective tensor rates and its application in Hooke-like isotropic hypoelasticity. J. Elast. 143(1), 147–185 (2021). https://doi.org/10.1007/s10659-020-09808-2

    Article  MathSciNet  MATH  Google Scholar 

  74. Korobeynikov, S.N., Larichkin, A.Y., Rotanova, T.A.: Hyperelasticity models extending Hooke’s law from small to moderate strains and experimental verification of their scope of application. Int. J. Solids Struct. 252, 111815 (2022). https://doi.org/10.1016/j.ijsolstr.2022.111815

  75. Korobeynikov, S.N., Larichkin, A.Y., Rotanova, T.A.: Simulating cylinder torsion using Hill’s linear isotropic hyperelastic material models. Mech. Time-Dependent Mater. (2023) (in press). https://doi.org/10.1007/s11043-023-09592-1

  76. Latorre, M., Montáns, F.J.: Extension of the Sussman-Bathe spline-based hyperelastic model to incompressible transversely isotropic materials. Comput. Struct. 122, 13–26 (2013). https://doi.org/10.1016/j.compstruc.2013.01.018

    Article  Google Scholar 

  77. Latorre, M., Montáns, F.J.: What-You-Prescribe-Is-What-You-Get orthotropic hyperelasticity. Comput. Mech. 53(6), 1279–1298 (2014). https://doi.org/10.1007/s00466-013-0971-3

    Article  MathSciNet  MATH  Google Scholar 

  78. Latorre, M., Montáns, F.J.: Experimental data reduction for hyperelasticity. Comput. Struct. 232, 10519 (2020). https://doi.org/10.1016/j.compstruc.2018.02.011

  79. Luehr, C.P., Rubin, M.B.: The significance of projection operators in the spectral representation of symmetric second order tensors. Comput. Methods Appl. Mech. Eng. 84(3), 243–246 (1990). https://doi.org/10.1016/0045-7825(90)90078-Z

    Article  MathSciNet  MATH  Google Scholar 

  80. Mahnken, R.: Strain mode-dependent weighting functions in hyperelasticity accounting for verification, validation, and stability of material parameters. Arch. Appl. Mech. 92(3), 713–754 (2022). https://doi.org/10.1007/s00419-021-02069-y

    Article  MathSciNet  Google Scholar 

  81. McMeeking, R.M., Rice, J.R.: Finite-element formulations for problems of large elastic-plastic deformation. Int. J. Solids Struct. 11(5), 601–616 (1975). https://doi.org/10.1016/0020-7683(75)90033-5

    Article  MATH  Google Scholar 

  82. Meng, S., Imtiaz, H., Liu, B.: A simple interpolation-based approach towards the development of an accurate phenomenological constitutive relation for isotropic hyperelastic materials. Extreme Mech. Lett. 49, 101485 (2021). https://doi.org/10.1016/j.eml.2021.101485

  83. Miehe, C., Lambrecht, M.: Algorithms for computation of stresses and elasticity moduli in terms of Seth-Hill’s family of generalized strain tensors. Commun. Numer. Methods Eng. 17(5), 337–353 (2001). https://doi.org/10.1002/cnm.404

    Article  MATH  Google Scholar 

  84. Nagtegaal, J.C.: On the implementation of inelastic constitutive equations with special reference to large strain problems. Comput. Methods Appl. Mech. Eng. 33, 469–484 (1982). https://doi.org/10.1016/0045-7825(82)90120-7

    Article  MATH  Google Scholar 

  85. Nedjar, B., Baaser, H., Martin, R.J., et al.: A finite element implementation of the isotropic exponentiated Hencky-logarithmic model and simulation of the eversion of elastic tubes. Comput. Mech. 62(4), 635–654 (2018). https://doi.org/10.1007/s00466-017-1518-9

    Article  MathSciNet  MATH  Google Scholar 

  86. Neff, P., Ghiba, I.D., Lankeit, J.: The exponentiated Hencky-logarithmic strain energy. Part I: Constitutive issues and rank-one convexity. J. Elast. 121(2):143–234. https://doi.org/10.1007/s10659-015-9524-7 (2015)

  87. Neff, P., Eidel, B., Martin, R.J.: Geometry of logarithmic strain measures in solid mechanics. Arch. Ration. Mech. Anal. 222(2), 507–572 (2016). https://doi.org/10.1007/s00205-016-1007-x

    Article  MathSciNet  MATH  Google Scholar 

  88. Ogden, R.W.: Large deformation isotropic elasticity: on the correlation of theory and experiment for compressible rubberlike solids. Proc. R. Soc. Lond. A Math. Phys. Sci. 328(1575), 567–583 (1972). https://doi.org/10.1098/rspa.1972.0096

    Article  MATH  Google Scholar 

  89. Ogden, R.W.: Non-linear Elastic Deformations. Ellis Horwood, Chichester (1984)

    MATH  Google Scholar 

  90. Oldroyd, J.G.: On the formulation of rheological equations of state. Proc. R. Soc. Lond. A 200(1063), 523–541 (1950). https://doi.org/10.1098/rspa.1950.0035

    Article  MathSciNet  MATH  Google Scholar 

  91. Oldroyd, J.G.: Non-Newtonian effects in steady motion of some idealized elastico-viscous liquids. Proc. R. Soc. Lond. A 245(1241), 278–297 (1958). https://doi.org/10.1098/rspa.1958.0083

    Article  MathSciNet  MATH  Google Scholar 

  92. O’Shea, D.J., Attard, M.M., Kellermann, D.C.: Hyperelastic constitutive modelling for transversely isotropic composites and orthotropic biological tissues. Int. J. Solids Struct. 169, 1–20 (2019). https://doi.org/10.1016/j.ijsolstr.2018.07.013

    Article  Google Scholar 

  93. O’Shea, D.J., Attard, M.M., Kellermann, D.C.: Anisotropic hyperelasticity using a fourth-order structural tensor approach. Int. J. Solids Struct. 198, 149–169 (2020). https://doi.org/10.1016/j.ijsolstr.2020.03.021

    Article  Google Scholar 

  94. O’Shea, D.J., Attard, M.M., Kellermann, D.C., et al.: Nonlinear finite element formulation based on invariant-free hyperelasticity for orthotropic materials. Int. J. Solids Struct. 185–186, 191–201 (2020). https://doi.org/10.1016/j.ijsolstr.2019.08.010

    Article  Google Scholar 

  95. O’Shea, D.J., Attard, M.M., Kellermann, D.C.: On fibre dispersion in anisotropic soft biological tissues using fourth-order structural tensors. Int. J. Solids Struct. 236–237, 111052 (2022). https://doi.org/10.1016/j.ijsolstr.2021.111052

  96. Peyraut, F., Feng, Z.Q., He, Q.C., et al.: Robust numerical analysis of homogeneous and non-homogeneous deformations. Appl. Numer. Math. 59(7), 1499–1514 (2009). https://doi.org/10.1016/j.apnum.2008.10.002

    Article  MathSciNet  MATH  Google Scholar 

  97. Pietrzak, G.: Continuum mechanics modelling and augmented Lagrangian formulation of large deformation frictional contact problems. Ph.D. thesis, LMA, DGM, EPFL, Lausanne (1997)

  98. Plešek, J., Kruisová, A.: Formulation, validation and numerical procedures for Hencky’s elasticity model. Comput. Struct. 84(17–18), 1141–1150 (2006). https://doi.org/10.1016/j.compstruc.2006.01.005

    Article  Google Scholar 

  99. Poživilová, A.: Constitutive modeling of hyperelastic materials using the logarithmic description. Ph.D. thesis, CTU, Prague (2002)

  100. Rubin, M.B.: Continuum Mechanics with Eulerian Formulations of Constitutive Equations. Springer, Cham (2021)

    Book  MATH  Google Scholar 

  101. Sansour, C., Bednarczyk, H.: A study on rate-type constitutive equations and the existence of a free energy function. Acta Mech. 100(3), 205–221 (1993). https://doi.org/10.1007/BF01174790

    Article  MathSciNet  MATH  Google Scholar 

  102. Scheidler, M.: Time rates of generalized strain tensors Part I: component formulas. Mech. Mater. 11(3), 199–210 (1991). https://doi.org/10.1016/0167-6636(91)90002-H

    Article  Google Scholar 

  103. Schwarz, A., Steeger, K., Igelbüscher, M., et al.: Different approaches for mixed LSFEMs in hyperelasticity: application of logarithmic deformation measures. Int. J. Numer. Meth. Eng. 115(9), 1138–1153 (2018). https://doi.org/10.1002/nme.5838

    Article  MathSciNet  Google Scholar 

  104. Simo, J.C., Hughes, T.J.R.: Computational Inelasticity. Springer, Berlin (1998)

    MATH  Google Scholar 

  105. Simo, J.C., Pister, K.S.: Remarks on rate constitutive equations for finite deformation problems: computational implications. Comput. Methods Appl. Mech. Eng. 46(2), 201–215 (1984). https://doi.org/10.1016/0045-7825(84)90062-8

    Article  MATH  Google Scholar 

  106. Steinmann, P., Hossain, M., Possart, G.: Hyperelastic models for rubber-like materials: consistent tangent operators and suitability for Treloar’s data. Arch. Appl. Mech. 82(9), 1183–1217 (2012). https://doi.org/10.1007/s00419-012-0610-z

    Article  MATH  Google Scholar 

  107. Sussman, T., Bathe, K.J.: A model of incompressible isotropic hyperelastic material behavior using spline interpolations of tension-compression test data. Commun. Numer. Methods Eng. 25(1), 53–63 (2009). https://doi.org/10.1002/cnm.1105

    Article  MathSciNet  MATH  Google Scholar 

  108. Treloar, L.R.G.: Stress-strain data for vulcanized rubber under various types of deformation. Rubber Chem. Technol. 17(4), 813–825 (1944). https://doi.org/10.5254/1.3546701

    Article  Google Scholar 

  109. Treloar, L.R.G.: The Physics of Rubber Elasticity, 3rd edn. Clarendon Press, Oxford (1975)

    Google Scholar 

  110. Truesdell, C., Noll, W.: The non-linear field theories of mechanics. In: Flügge S (ed) Encyclopedia of Physics, vol III/3, pp 1–602. Springer, Berlin. https://doi.org/10.1007/978-3-642-46015-9 (1965)

  111. Valanis, K.C.: The Valanis-Landel strain energy function elasticity of incompressible and compressible rubber-like materials. Int. J. Solids Struct. 238, 111271 (2022). https://doi.org/10.1016/j.ijsolstr.2021.111271

  112. Valanis, K.C., Landel, R.F.: The strain-energy function of a hyperelastic material in terms of the extension ratios. J. Appl. Phys. 38(7), 2997–3002 (1967). https://doi.org/10.1063/1.1710039

    Article  Google Scholar 

  113. Wriggers, P.: Nonlinear Finite Element Methods. Springer, Berlin (2008)

    MATH  Google Scholar 

  114. Xiao, H.: Hencky strain and Hencky model: extending history and ongoing tradition. Multidiscip. Model. Mater. Struct. 1(1), 1–52 (2005). https://doi.org/10.1163/1573611054455148

    Article  Google Scholar 

  115. Xiao, H.: An explicit, direct approach to obtaining multiaxial elastic potentials that exactly match data of four benchmark tests for rubbery materials–part 1: incompressible deformations. Acta Mech. 223(9), 2039–2063 (2012). https://doi.org/10.1007/s00707-012-0684-2

    Article  MathSciNet  MATH  Google Scholar 

  116. Xiao, H.: An explicit, direct approach to obtain multi-axial elastic potentials which accurately match data of four benchmark tests for rubbery materials–part 2: general deformations. Acta Mech. 224(3), 479–498 (2013). https://doi.org/10.1007/s00707-012-0768-z

    Article  MathSciNet  MATH  Google Scholar 

  117. Xiao, H.: Elastic potentials with best approximation to rubberlike elasticity. Acta Mech. 226(2), 331–350 (2015). https://doi.org/10.1007/s00707-014-1176-3

    Article  MathSciNet  MATH  Google Scholar 

  118. Xiao, H., Chen, L.S.: Hencky’s elasticity model and linear stress-strain relations in isotropic finite hyperelasticity. Acta Mech. 157(1), 51–60 (2002). https://doi.org/10.1007/BF01182154

    Article  MATH  Google Scholar 

  119. Xiao, H., Chen, L.S.: Hencky’s logarithmic strain and dual stress-strain and strain-stress relations in isotropic finite hyperelasticity. Int. J. Solids Struct. 40(6), 1455–1463 (2003). https://doi.org/10.1016/S0020-7683(02)00653-4

    Article  MATH  Google Scholar 

  120. Xiao, H., He, L.H.: A unified exact analysis for the Poynting effects of cylindrical tubes made of Hill’s class of Hookean compressible elastic materials at finite strain. Int. J. Solids Struct. 44(2), 718–731 (2007). https://doi.org/10.1016/j.ijsolstr.2006.05.019

    Article  MATH  Google Scholar 

  121. Xiao, H., Bruhns, O.T., Meyers, A.: Logarithmic strain, logarithmic spin and logarithmic rate. Acta Mech. 124(1), 89–105 (1997). https://doi.org/10.1007/BF01213020

    Article  MathSciNet  MATH  Google Scholar 

  122. Xiao, H., Bruhns, O., Meyers, A.: Objective corotational rates and unified work-conjugacy relation between Eulerian and Lagrangean strain and stress measures. Arch. Mech. 50(6), 1015–1045 (1998)

    MathSciNet  MATH  Google Scholar 

  123. Xiao, H., Bruhns, O.T., Meyers, A.: Existence and uniqueness of the integrable-exactly hypoelastic equation \(\overset{\circ }{\varvec {\tau }}{}^{\ast }=\lambda (\text{ tr }\,\textbf{D} )\textbf{I} +2\mu \textbf{D} \) and its significance to finite inelasticity. Acta Mech. 138(1), 31–50 (1999). https://doi.org/10.1007/BF01179540

    Article  Google Scholar 

  124. Xiao, H., Bruhns, O.T., Meyers, A.: A natural generalization of hypoelasticity and Eulerian rate type formulation of hyperelasticity. J. Elast. 56(1), 59–93 (1999). https://doi.org/10.1023/A:1007677619913

    Article  MathSciNet  MATH  Google Scholar 

  125. Xiao, H., Bruhns, O.T., Meyers, A.: Objective stress rates, path-dependence properties and non-integrability problems. Acta Mech. 176(3), 135–151 (2005). https://doi.org/10.1007/s00707-005-0218-2

    Article  MATH  Google Scholar 

  126. Xiao, H., Bruhns, O., Meyers, A.: Objective stress rates, cyclic deformation paths, and residual stress accumulation. ZAMM J. Appl. Math. Mech./ Zeitschrift für Angewandte Mathematik und Mechanik 86(11), 843–855 (2006). https://doi.org/10.1002/zamm.200610276

    Article  MathSciNet  MATH  Google Scholar 

  127. Yu, L., Jin, T., Yin, Z., et al.: A model for rubberlike elasticity up to failure. Acta Mech. 226(5), 1445–1456 (2015). https://doi.org/10.1007/s00707-014-1262-6

    Article  MathSciNet  MATH  Google Scholar 

  128. Yuan, L., Gu, Z.X., Yin, Z.N., et al.: New compressible hyper-elastic models for rubberlike materials. Acta Mech. 226(12), 4059–4072 (2015). https://doi.org/10.1007/s00707-015-1475-3

    Article  MathSciNet  MATH  Google Scholar 

  129. Zhang, Y.Y., Li, H., Wang, X.M., et al.: Direct determination of multi-axial elastic potentials for incompressible elastomeric solids: an accurate, explicit approach based on rational interpolation. Continuum Mech. Thermodyn. 26(2), 207–220 (2014). https://doi.org/10.1007/s00161-013-0297-6

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The support from Russian Federation government (Grant No. P220-14.W03.31.0002) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. N. Korobeynikov.

Ethics declarations

Conflict of interest

The corresponding author states that there is no conflict of interest

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Korobeynikov, S.N. Families of Hooke-like isotropic hyperelastic material models and their rate formulations. Arch Appl Mech 93, 3863–3893 (2023). https://doi.org/10.1007/s00419-023-02466-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-023-02466-5

Keywords

Mathematics Subject Classification

Navigation