Skip to main content
Log in

A model for rubberlike elasticity up to failure

  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

Multi-axial elastic potentials for isotropic, incompressible elastomeric solids are constructed based solely on uniaxial potentials by means of direct, explicit procedures. Results are presented for the purpose of meeting the following three requirements: (i) the strain-stiffening effect is represented with rapidly growing stress at certain strain limits, (ii) the strain energy never grows to infinity but is always bounded, and (iii) the stress is also bounded and asymptotically tends to vanish with increasing strain up to failure. As such, a realistic simulation of rubberlike elasticity with the strain-stiffening effect up to failure is proposed for the first time. Numerical examples show good agreement with a number of test data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anand L.: On H. Hencky’s approximate strain-energy function for moderate deformations. J. Appl. Mech. 46, 78–82 (1979)

    Article  MATH  Google Scholar 

  2. Anand L.: Moderate deformations in extension-torsion of incompressible isotropic elastic materials. J. Mech. Phys. Solids 34, 293–304 (1986)

    Article  Google Scholar 

  3. Aron M.: On certain deformation classes of compressible Hencky materials. Math. Mech. Solids 19, 467–478 (2006)

    MathSciNet  Google Scholar 

  4. Arruda E.M., Boyce M.C.: A three-dimensional constitutive model for the large stretch behaviour of rubber elastic materials. J. Mech. Phys. Solids 41, 389–412 (1993)

    Article  Google Scholar 

  5. Beatty M.F.: An average-stretch full-network model for rubber elasticity. J. Elast. 70, 65–86 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  6. Beatty M.F.: On constitutive models for limited elastic, molecular based materials. Math. Mech. Solids 13, 375–387 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  7. Boyce M.C: Direct comparison of the Gent and the Arruda-Boyce constitutive models of rubber elasticity. Rubber Chem. Technol. 69, 781–785 (1996)

    Article  Google Scholar 

  8. Boyce M.C., Arruda E.M.: Constitutive models of rubber elasticity: a review. Rubber Chem. Technol. 73, 504–523 (2003)

    Article  Google Scholar 

  9. Criscione J.C., Humphrey J.D., Douglas A.S., Hunter W.C.: An invariant basis for natural strain which yields orthogonal stress response terms in isotropic hyperelasticity. J. Mech. Phys. Solids 48, 2445–2465 (2000)

    Article  MATH  Google Scholar 

  10. Diani J., Gilormini P.: Combining the logarithmic strain and the full-network model for a better understanding of the hyperelastic behaviour of rubber-like materials. J. Mech. Phys. Solids 53, 2579–2596 (2005)

    Article  MATH  Google Scholar 

  11. Drozdov A.D., Gottlieb M.: Ogden-type constitutive equations in finite elasticity of elastomers. Acta Mech. 183, 231–252 (2006)

    Article  MATH  Google Scholar 

  12. Edwards S.F., Vilgis T.A.: The tube model theory of rubber elasticity. Rep. Prog. Phys. 51, 243–297 (1988)

    Article  MathSciNet  Google Scholar 

  13. Fitzjerald S.: A tensorial Hencky measure of strain and strain rate for finite deformation. J. Appl. Phys. 51, 5111–5115 (1980)

    Article  Google Scholar 

  14. Fried E.: An elementary molecular-statistical basis for the Mooney and Rivlin–Saunders theories of rubber elasticity. J. Mech. Phys. Solids 50, 571–582 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  15. Gent A.N.: A new constitutive relation for rubber. Rubber Chem. Technol. 69, 59–61 (1996)

    Article  MathSciNet  Google Scholar 

  16. Gent A.N.: Extensibility of rubber under different types of deformation. J. Rheol. 49, 271–275 (2005)

    Article  Google Scholar 

  17. Heinrich G., Kaliske M.: Theoretical and numerical formulation of a molecular based constitutive tube-model of rubber elasticity. Comput. Theor. Polym. Sci. 7, 227–241 (1997)

    Article  Google Scholar 

  18. Heinrich G., Straube E., Helmis G.: Rubber elasticity of polymer networks: theories. Adv. Polym. Sci. 85, 33–87 (1988)

    Article  Google Scholar 

  19. Hill R.: Constitutive inequalities for isotropic elastic solids under finite strain. Proc. R. Soc. Lond. A 314, 457–472 (1970)

    Article  MATH  Google Scholar 

  20. Horgan C.O., Murphy J.G.: Limiting chain extensibility constitutive models of Valanis–Landel type. J. Elast. 86, 101–111 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  21. Horgan C.O., Murphy J.G.: A generalization of Hencky’s strain-energy density to model the large deformation of slightly compressible solid rubber. Mech. Mater. 41, 943–950 (2009)

    Article  Google Scholar 

  22. Horgan C.O., Saccomandi G.: A molecular-statistical basis for the Gent constitutive model of rubber elasticity. J. Elast. 68, 167–176 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  23. Horgan C.O., Saccomandi G.: Finite thermoelasticity with limiting chain extensibility. J. Mech. Phys. Solids 51, 1127–1146 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  24. Horgan C.O., Saccomandi G.: Phenomenological hyperelastic strain-stiffening constitutive models for rubber. Rubber Chem. Technol. 79, 1–18 (2006)

    Article  Google Scholar 

  25. Jones D.F., Treloar L.R.G.: The properties of rubber in pure homogeneous strain. J. Phys. D 8, 1285–1304 (1975)

    Article  Google Scholar 

  26. Kaliske M., Heinrich G.: An extended tube-model for rubber elasticity: statistical-mechanical theory and finite element implementation. Rubber Chem. Technol. 72, 602–632 (1998)

    Article  Google Scholar 

  27. Lahellec N., Mazerolle F., Michel J.C.: Second-order estimate of the macro-scopic behavior of periodic hyperelastic composites: theory and experimental validation. J. Mech. Phys. Solids 52, 27–49 (2004)

    Article  MATH  Google Scholar 

  28. Lopez-Pamies O.: A new I1-based hyperelastic model for rubber elastic materials. C. R. Mec. 338, 3–11 (2010)

    Article  MATH  Google Scholar 

  29. Lurie A.I.: Nonlinear Theory of Elasticity. Elsevier Science Publishers B.V., Netherlands (1990)

    MATH  Google Scholar 

  30. Miehe C., Göktepe S., Lulei F.: A micro–macro approach to rubberlike materials-part I: the non-affine microsphere model of rubber elasticity. J. Mech. Phys. Solids 52, 2617–2660 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  31. Murphy J.G.: Some remarks on kinematic modeling of limiting chain extensibility. Math. Mech. Solids 11, 629–641 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  32. Ogden R.W.: Non-linear Elastic Deformations. Ellis Horwood, Chichester (1984)

    Google Scholar 

  33. Ogden R.W., Saccomandi G., Sgura I.: On worm-like chain models within the three-dimensional continuum mechanics framework. Proc. R. Soc. Lond. A 462, 749–768 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  34. Saccomandi, G., Ogden, R.W.: Mechanics and Thermomechanics of Rubberlike Solids. CISM Couses and Lectures No. 452, Springer, Wien (2004)

  35. Treloar L.R.G.: The Physics of Rubber Elasticity. Oxford University Press, Oxford (1975)

    Google Scholar 

  36. Vahapoglu V., Karadenitz S.: Constitutive equations for isotropic rubber-like materials using phenomenological approach: a bibliography (1930–2003). Rubber Chem. Technol. 79, 489–499 (2005)

    Article  Google Scholar 

  37. Xiao H.: Hencky strain and Hencky model: extending history and ongoing tradition. Multidiscip. Model. Mater. Struct. 1, 1–52 (2005)

    Article  Google Scholar 

  38. Xiao H.: An explicit, direct approach to obtaining multi-axial elastic potentials that exactly match data of four benchmark tests for rubberlike materials-part 1: incompressible deformations. Acta Mech. 223, 2039–2063 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  39. Xiao, H.: Elastic potentials with best approximation to rubberlike elasticity. Acta Mech. doi:10.1007/s00707-014-1176-3 (2014)

  40. Xiao H., Bruhns O.T., Meyers A.: Explicit dual stress–strain and strain–stress relations of incompressible isotropic hyperelastic solids via deviatoric Hencky strain and Cauchy stress. Acta Mech. 168, 21–33 (2004)

    Article  MATH  Google Scholar 

  41. Xiao H., Chen L.S.: Henckys logarithmic strain measure and dual stress–strain and strain–stress relations in isotropic finite hyper-elasticity. Int. J. Solids Struct. 40, 1455–1463 (2003)

    Article  MATH  Google Scholar 

  42. Zhang Y.Y., Li H., Wang X.M., Yin Z.N., Xiao H.: Direct determination of multi-axial elastic potentials for incompressible elastomeric solids: an accurate, explicit approach based on rational interpolation. Contin. Mech. Thermodyn. 26, 207–220 (2014)

    Article  MathSciNet  Google Scholar 

  43. Zuniga A.E.: A non-Gaussian network model for rubber elasticity. Polymer 47, 907–914 (2006)

    Article  Google Scholar 

  44. Zuniga A.E., Beatty M.F.: Constitutive equations for amended non-Gaussian network models of rubber elasticity. Int. J. Eng. Sci. 40, 2265–2294 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heng Xiao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, L., Jin, T., Yin, Z. et al. A model for rubberlike elasticity up to failure. Acta Mech 226, 1445–1456 (2015). https://doi.org/10.1007/s00707-014-1262-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-014-1262-6

Keywords

Navigation