Skip to main content
Log in

An integral shear and normal deformation theory for bending analysis of functionally graded sandwich curved beams

  • Original Paper
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

An efficient integral higher-order shear and normal deformation theory (IHSNDT) is developed based on a unified and enriched kinematic model to investigate the static bending phenomenon of functionally graded (FG) sandwich curved beams under uniform mechanical loads. The essential feature and most prominent aspect of this theory is that it explains the hyperbolic cosine distribution of transverse shear stress through the thickness of a beam with stretching effect and satisfies the stress-free boundary conditions on the upper and lower surfaces without needing any shear correction factor. The material properties of FG skins are presumed to vary continuously through the thickness direction according to power-law distribution and that the core is made of a homogeneous material. The governing equations and the associated boundary conditions have been established analytically within the framework of the principle of virtual work and then they are solved via Navier’s technique. To verify the correctness of the proposed beam formulation, the non-dimensional results of displacements and stresses obtained for simply supported FG sandwich curved beams are compared with the available solutions in the literature for various power-law index, skin-core-skin thickness and length-to-thickness ratios. The importance of the present study is that it contributes to some new results on the static behavior of FG sandwich curved beams due to its advantages as a fundamental structural element compared to straight ones, which can serve as a reference for future research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Wang, Z., Wang, X., Xu, G., Cheng, S., Zeng, T.: Free vibration of two-directional functionally graded beams. Compos. Struct. 135, 191–198 (2016). https://doi.org/10.1016/j.compstruct.2015.09.013

    Article  Google Scholar 

  2. Pydah, A., Sabale, A.: Static analysis of bi-directional functionally graded curved beams. Compos. Struct. 160, 867–876 (2017). https://doi.org/10.1016/j.compstruct.2016.10.120

    Article  Google Scholar 

  3. Mohamed, N., Eltaher, M.A., Mohamed, S.A., Seddek, L.F.: Numerical analysis of nonlinear free and forced vibrations of buckled curved beams resting on nonlinear elastic foundations. Int. J. Non-Linear Mech. 101, 157–173 (2018). https://doi.org/10.1016/j.ijnonlinmec.2018.02.014

    Article  Google Scholar 

  4. Timoshenko, S.P.: On the correction for shear of the differential equation for transverse vibrations of prismatic bars. Philos. Mag. 41(245), 742–746 (1921). https://doi.org/10.1080/14786442108636264

    Article  Google Scholar 

  5. Yousefi, A., Rastgo, A.: Free vibration of functionally graded spatial curved beams. Compos. Struct. 93(11), 3048–3056 (2011). https://doi.org/10.1016/j.compstruct.2011.04.024

    Article  Google Scholar 

  6. Nanda, N., Kapuria, S.: Spectral finite element for wave propagation analysis of laminated composite curved beams using classical and first order shear deformation theories. Compos. Struct. 132, 310–320 (2015). https://doi.org/10.1016/j.compstruct.2015.04.061

    Article  Google Scholar 

  7. Jouneghani, F.Z., Dimitri, R., Bacciocchi, M., Tornabene, F.: Free vibration analysis of functionally graded porous doubly-curved shells based on the first-order shear deformation theory. Appl. Sci. 7(12), 1–20 (2017). https://doi.org/10.3390/app7121252

    Article  Google Scholar 

  8. Wan, Z.Q., Li, S.R., Ma, H.W.: Geometrically nonlinear analysis of functionally graded Timoshenko curved beams with variable curvatures. Adv. in Mater. Sci. Eng. Article ID 6204145, 1–10 (2019). https://doi.org/10.1155/2019/6204145.

  9. Huang, Y., Ouyang, Z.-Y.: Exact solution for bending analysis of two-directional functionally graded Timoshenko beams. Arch. Appl. Mech. (2020). https://doi.org/10.1007/s00419-019-01655-5

    Article  Google Scholar 

  10. Hieu, P.T., Van Tung, H.V.: Thermal and thermomechanical buckling of shear deformable FG-CNTRC cylindrical shells and toroidal shell segments with tangentially restrained edges. Arch. Appl. Mech. 90(7), 1529–1546 (2020). https://doi.org/10.1007/s00419-020-01682-7

    Article  Google Scholar 

  11. Surana, K.S., Nguyen, S.H.: Two-dimensional curved beam element with higher-order hierarchical transverse approximation for laminated composites. Comput. Struct. 36(3), 499–511 (1990). https://doi.org/10.1016/0045-7949(90)90284-9

    Article  Google Scholar 

  12. Li, X.F., Wang, B.L., Han, J.C.: A higher-order theory for static and dynamic analyses of functionally graded beams. Arch. Appl. Mech. 80(10), 1197–1212 (2010). https://doi.org/10.1007/s00419-010-0435-6

    Article  MATH  Google Scholar 

  13. Jun, L., Guangwei, R., Jin, P., Xiaobin, L., Weiguo, W.: Free vibration analysis of a laminated shallow curved beam based on trigonometric shear deformation theory. Mech. Based Des. Struct. 42, 111–129 (2014). https://doi.org/10.1080/15397734.2013.846224

    Article  Google Scholar 

  14. Vo, T.P., Thai, H.T., Nguyen, T.K., Maheri, A., Lee, J.: Finite element model for vibration and buckling of functionally graded sandwich beams based on a refined shear deformation theory. Eng. Struct. 64, 12–22 (2014). https://doi.org/10.1016/j.engstruct.2014.01.029

    Article  Google Scholar 

  15. Nguyen, T.K., Nguyen, T.P., Vo, T.P., Thai, H.T.: Vibration and buckling analysis of functionally graded sandwich beams by a new higher-order shear deformation theory. Compos. Part B Eng. 76, 273–285 (2015). https://doi.org/10.1016/j.compositesb.2015.02.032

    Article  Google Scholar 

  16. Kurtaran, H.: Large displacement static and transient analysis of functionally graded deep curved beams with generalized differential quadrature method. Compos. Struct. 131, 821–831 (2015). https://doi.org/10.1016/j.compstruct.2015.06.024

    Article  Google Scholar 

  17. Sayyad, A.S., Ghugal, Y.M., Naik, N.S.: Bending analysis of laminated composite and sandwich beams according to refined trigonometric beam theory. Curved Layer. Struct. 2, 279–289 (2015). https://doi.org/10.1515/cls-2015-0015

    Article  Google Scholar 

  18. Tornabene, F., Fantuzzi, N., Viola, E., Batra, R.C.: Stress and strain recovery for functionally graded free-form and doubly-curved sandwich shells using higher-order equivalent single layer theory. Compos. Struct. 119, 67–89 (2015). https://doi.org/10.1016/j.compstruct.2014.08.005

    Article  Google Scholar 

  19. Luu, A.T., Lee, J.: Non-linear buckling of elliptical curved beams. Int. J. Non Linear Mech. 82, 132–143 (2016). https://doi.org/10.1016/j.ijnonlinmec.2016.02.001

    Article  Google Scholar 

  20. Mantari, J., Canales, F.: A unified quasi-3d HSDT for the bending analysis of laminated beams. Aerosp. Sci. Technol. 54, 267–275 (2016). https://doi.org/10.1016/j.ast.2016.04.026

    Article  Google Scholar 

  21. Guo, J., Shi, D., Wang, Q., Pang, F., Liang, Q.: A domain decomposition approach for static and dynamic analysis of composite laminated curved beam with general elastic restrains. Mech. Adv. Mater. Struct. 26(16), 1390–1402 (2018). https://doi.org/10.1080/15376494.2018.1432810

    Article  Google Scholar 

  22. Sayyad, A.S., Ghugal, Y.M.: A sinusoidal beam theory for functionally graded sandwich curved beams. Compos. Struct. 226, 111246 (2019). https://doi.org/10.1016/j.compstruct.2019.111246

    Article  Google Scholar 

  23. Tornabene, F.: On the critical speed evaluation of arbitrarily oriented rotating doubly-curved shells made of functionally graded materials. Thin-Walled Struct. 140, 85–98 (2019). https://doi.org/10.1016/j.tws.2019.03.018

    Article  Google Scholar 

  24. Karami, B., Janghorban, M., Shahsavari, D., Dimitri, R., Tornabene, F.: Nonlocal buckling analysis of composite curved beams reinforced with functionally graded carbon nanotubes. Molecules 24(15), 2750 (2019). https://doi.org/10.3390/molecules24152750

    Article  Google Scholar 

  25. He, X.T., Li, X., Li, W.M., Sun, J.Y.: Bending analysis of functionally graded curved beams with different properties in tension and compression. Arch. Appl. Mech. 89, 1973–1994 (2019). https://doi.org/10.1007/s00419-019-01555-8

    Article  Google Scholar 

  26. Katariya, P.V., Panda, S.K.: Frequency and deflection responses of shear deformable skew sandwich curved shell panel: A Finite Element Approach. Arab. J. Sci. Eng. 44, 1631–1648 (2019). https://doi.org/10.1007/s13369-018-3633-0

    Article  Google Scholar 

  27. Qin, B., Zhao, X., Liu, H., Yu, Y., Wang, Q.: Free vibration analysis of curved laminated composite beams with different shapes, lamination schemes, and boundary conditions. Materials. 13(4), 1010–2020 (2020). https://doi.org/10.3390/ma13041010

    Article  Google Scholar 

  28. Allam, O., Draiche, K., Bousahla, A.A., Bourada, F., Tounsi, A., Benrahou, K.H., Mahmoud, S.R., Adda Bedia, E.A., Tounsi, A.: A generalized 4-unknown refined theory for bending and free vibration analysis of laminated composite and sandwich plates and shells. Comput. Concr. 26(2), 185–201 (2020). https://doi.org/10.12989/cac.2020.26.2.185

    Article  Google Scholar 

  29. Avhad, P.V., Sayyad, A.S.: On the static deformation of FG sandwich beams curved in elevation using a new higher order beam theory. Indian Acad. Sci. Sadhana. 45(188), 1–16 (2020). https://doi.org/10.1007/s12046-020-01425-y

    Article  MathSciNet  Google Scholar 

  30. Magnucki, K., Lewinski, J., Magnucka-Blandzi, E.: An improved shear deformation theory for bending beams with symmetrically varying mechanical properties in the depth direction. Acta Mech. 231(10), 4381–4395 (2020). https://doi.org/10.1007/s00707-020-02763-y

    Article  MathSciNet  MATH  Google Scholar 

  31. Cuong-Le, T., Nguyen, K.D., Nguyen-Trong, N., Khatir, S., Nguyen-Xuan, H., Abdel-Wahab, M.: A three-dimensional solution for free vibration and buckling of annular plate, conical, cylinder and cylindrical shell of FG porous-cellular materials using IGA. Compos. Struct. 259, 113216 (2021). https://doi.org/10.1016/j.compstruct.2020.113216

    Article  Google Scholar 

  32. Yaylaci, M., Birinci, A.: The receding contact problem of two elastic layers supported by two elastic quarter planes. Struct. Eng. Mech. 48(2), 241–255 (2013). https://doi.org/10.12989/sem.2013.48.2.241

    Article  Google Scholar 

  33. Öner, E., Yaylaci, M., Birinci, A.: Analytical solution of a contact problem and comparison with the results from FEM. Struct. Eng. Mech. 54(4), 607–622 (2015). https://doi.org/10.12989/sem.2015.54.4.607

    Article  Google Scholar 

  34. Adiyaman, G., Yaylaci, M., Birinci, A.: Analytical and finite element solution of a receding contact problem. Struct. Eng. Mech. 54(1), 69–85 (2015). https://doi.org/10.12989/sem.2015.54.1.069

    Article  Google Scholar 

  35. Yaylaci, M.: The investigation crack problem through numerical analysis. Struct. Eng. Mech. 57(6), 1143–1156 (2016). https://doi.org/10.12989/sem.2016.57.6.1143

    Article  MathSciNet  Google Scholar 

  36. Uzun Yaylaci, E., Yaylaci, M., Ölmez, H., Birinci, A.: Artificial neural network calculations for a receding contact problem. Comput. Concr. 25(6), 551–563 (2020). https://doi.org/10.12989/cac.2020.25.6.000

    Article  Google Scholar 

  37. Pham, Q.H., Pham, T.D., Trinh, Q.V., Phan, D.H.: Geometrically nonlinear analysis of functionally graded shells using an edge-based smoothed MITC3 (ES-MITC3) finite elements. Eng. Comput. 36, 1069–1082 (2020). https://doi.org/10.1007/s00366-019-00750-z

    Article  Google Scholar 

  38. Akbaş, Ş, Fageehi, Y., Assie, A., Eltaher, M.: Dynamic analysis of viscoelastic functionally graded porous thick beams under pulse load. Eng. Comput. 55, 1–13 (2020). https://doi.org/10.1007/s00366-020-01070-3

    Article  Google Scholar 

  39. Shahmohammadi, M.A., Azhari, M., Saadatpour, M.M.: Free vibration analysis of sandwich FGM shells using isogeometric B-Spline finite strip method. Steel Compos. Struct. 34(3), 361–376 (2020). https://doi.org/10.12989/scs.2020.34.3.361

    Article  MATH  Google Scholar 

  40. Ghannadpour, S.A.M., Mehrparvar, M.: Nonlinear and post-buckling responses of FGM plates with oblique elliptical cutouts using plate assembly technique. Steel Compos. Struct. 34(2), 227–239 (2020). https://doi.org/10.12989/scs.2020.34.2.227

    Article  Google Scholar 

  41. Milan, A.G., Ayatollahi, M.: Transient analysis of multiple interface cracks between two dissimilar functionally graded magneto-electro-elastic layers. Arch. Appl. Mech. 90(8), 1829–1844 (2020). https://doi.org/10.1007/s00419-020-01699-y

    Article  Google Scholar 

  42. Yaylaci, M., Adiyaman, E., Öner, E., Birinci, A.: Examination of analytical and finite element solutions regarding contact of a functionally graded layer. Struct. Eng. Mech. 76(3), 325–336 (2020). https://doi.org/10.12989/sem.2020.76.3.325

    Article  MATH  Google Scholar 

  43. Yaylaci, M., Adiyaman, E., Öner, E., Birinci, A.: Investigation of continuous and discontinuous contact cases in the contact mechanics of graded materials using analytical method and FEM. Comput. Concr. 27(3), 199–210 (2021). https://doi.org/10.12989/cac.2021.27.3.199

    Article  Google Scholar 

  44. Yaylaci, M., Eyüboğlu, A., Adiyaman, G., Uzun Yaylaci, E., Öner, E., Birinci, A.: Assessment of different solution methods for receding contact problems in functionally graded layered mediums. Mech. Mater. 154, 130730 (2021). https://doi.org/10.1016/j.mechmat.2020.103730

    Article  Google Scholar 

  45. Karami, B., Shahsavari, D., Janghorban, M., Li, L.: Free vibration analysis of FG nanoplate with poriferous imperfection in hygrothermal environment. Struct. Eng. Mech. 73(2), 191–207 (2021). https://doi.org/10.12989/SEM.2020.73.2.191

    Article  Google Scholar 

  46. Nguyen, T.K., Nguyen, B.D.: A new higher-order shear deformation theory for static, buckling and free vibration analysis of functionally graded sandwich beams. J Sandw. Struct. Mater. 17(6), 613–631 (2015). https://doi.org/10.1177/1099636215589237

    Article  Google Scholar 

  47. Soldatos, K.P.: A transverse shear deformation theory for homogeneous monoclinic plates. Acta Mech. 94(3), 195–220 (1992). https://doi.org/10.1007/BF01176650

    Article  MathSciNet  MATH  Google Scholar 

  48. Pawar, E.G., Banerjee, S., Desai, Y.M.: Stress analysis of laminated composite and sandwich beams using a novel shear and normal deformation theory. Lat. Am. J. Solids. Struct. 12(7), 134–161 (2015). https://doi.org/10.1590/1679-78251470

    Article  Google Scholar 

  49. Shinde, B.M., Sayyad, A.S.: A Quasi-3D polynomial shear and normal deformation theory for laminated composite, sandwich, and functionally graded beams. Mech. Adv. Compos. Struct. 4(2), 139–152 (2017). https://doi.org/10.22075/macs.2017.10806.1105

    Article  Google Scholar 

  50. Draiche, K., Bousahla, A.A., Tounsi, A., Alwabli, A.S., Tounsi, A., Mahmoud, S.R.: Static analysis of laminated reinforced composite plates using a simple first-order shear deformation theory. Comput. Concr. 24(4), 369–378 (2019). https://doi.org/10.12989/cac.2019.24.4.369

    Article  Google Scholar 

  51. Fellah, M., Draiche, K., Houari, M.S.A., Tounsi, A., Saeed, T., Alhodaly, MSh., Benguediab, M.: A novel refined shear deformation theory for the buckling analysis of thick isotropic plates. Struct. Eng. Mech. 69(3), 335–345 (2019). https://doi.org/10.12989/sem.2019.69.3.335

    Article  Google Scholar 

  52. Vo, T.P., Thai, H.T., Nguyen, T.K., Inam, F., Lee, J.: A quasi-3D theory for vibration and buckling of functionally graded sandwich beams. Compos. Struct. 119, 1–12 (2015). https://doi.org/10.1016/j.compstruct.2014.08.006

    Article  Google Scholar 

  53. Sayyad, A.S., Avhad, P.V.: On static bending, elastic buckling and free vibration analysis of symmetric functionally graded sandwich beams. J. Solid Mech. 11(1), 166–180 (2019). https://doi.org/10.22034/JSM.2019.664227

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kada Draiche.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Draiche, K., Bousahla, A.A., Tounsi, A. et al. An integral shear and normal deformation theory for bending analysis of functionally graded sandwich curved beams. Arch Appl Mech 91, 4669–4691 (2021). https://doi.org/10.1007/s00419-021-02005-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-021-02005-0

Keywords

Navigation