Skip to main content
Log in

Thermal and thermomechanical buckling of shear deformable FG-CNTRC cylindrical shells and toroidal shell segments with tangentially restrained edges

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

This paper presents a simple and effective analytical approach to investigate buckling behavior of carbon nanotube-reinforced composite (CNTRC) cylindrical shells and toroidal shell segments surrounded by elastic media and subjected to elevated temperature, lateral pressure and thermomechanical load. The properties of constituents are assumed to be temperature-dependent, and effective properties of CNTRC are estimated according to extended rule of mixture. Carbon nanotubes (CNTs) are reinforced into matrix material such in a way that their volume fraction is varied in the thickness direction according to functional rules. Formulations are established within the framework of first-order shear deformation theory taking surrounding elastic media and tangential elasticity of edges into consideration. The solutions of deflection and stress function are assumed to satisfy simply supported boundary conditions, and Galerkin method is used to derive expressions of buckling loads. In thermal buckling analysis, an iteration algorithm is employed to evaluate critical temperatures. The effects of CNT volume fraction and distribution patterns, degree of in-plane edge constraints, geometrical parameters, preexisting loads and surrounding elastic foundations on the critical loads of nanocomposite shells are analyzed through a variety of numerical examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Hutchinson, J.W.: Initial post-buckling behavior of toroidal shell segments. Int. J. Solids Struct. 3, 97–115 (1967)

    Google Scholar 

  2. Brush, D.O., Almroth, B.O.: Buckling of Bars, Plates and Shells. McGraw-Hill, New York (1975)

    MATH  Google Scholar 

  3. Shen, H.S.: Postbuckling analysis of pressure-loaded functionally graded cylindrical shells in thermal environments. Eng. Struct. 25, 487–497 (2003)

    Google Scholar 

  4. Shen, H.S.: Thermal postbuckling behavior of functionally graded cylindrical shells with temperature-dependent properties. Int. J. Solids Struct. 41, 1961–1974 (2004)

    MATH  Google Scholar 

  5. Huang, H., Han, Q.: Research on nonlinear postbuckling of functionally graded cylindrical shells under radial loads. Compos. Struct. 92, 1352–1357 (2010)

    Google Scholar 

  6. Dung, D.V., Nam, V.H.: Nonlinear dynamic analysis of eccentrically stiffened functionally graded circular cylindrical thin shells under external pressure and surrounded by an elastic medium. Eur. J. Mech. A/Solids 46, 42–53 (2014)

    MathSciNet  MATH  Google Scholar 

  7. Bich, D.H., Ninh, D.G., Thinh, T.I.: Buckling analysis of eccentrically stiffened functionally graded toroidal shell segments under mechanical load. J. Eng. Mech. ASCE 142(1), 04015054 (2016)

    Google Scholar 

  8. Bich, D.H., Ninh, D.G.: Post-buckling of sigmoid-functionally graded material toroidal shell segment surrounded by an elastic foundation under thermos-mechanical loads. Compos. Struct. 138, 253–263 (2016)

    Google Scholar 

  9. Thostenson, E.T., Ren, Z., Chou, T.W.: Advances in the science and technology of carbon nanotubes and their composites: a review. Compos. Sci. Technol. 61, 1899–1912 (2001)

    Google Scholar 

  10. Coleman, J.N., Khan, U., Blau, W.J., Gun’ko, Y.K.: Small but strong: a review of the mechanical properties of carbon nanotube-polymer composites. Carbon 44, 1624–1652 (2006)

    Google Scholar 

  11. Strozzi, M., Pellicano, F.: Linear vibrations of triple-walled carbon nanotubes. Math. Mech. Solids 23(11), 1456–1481 (2017). https://doi.org/10.1177/1081286517727331

    Article  MathSciNet  MATH  Google Scholar 

  12. Strozzi, M., Smirnov, V.V., Manevitch, L.I., Pellicano, F.: Nonlinear vibration and energy exchange of single-walled carbon nanotubes. Radial breathing modes. Compos. Struct. 184, 613–632 (2018). https://doi.org/10.1016/j.compstruct.2017.09.108

    Article  Google Scholar 

  13. Strozzi, M., Pellicano, F.: Nonlinear resonance interaction between conjugate circumferential flexural modes in single-walled carbon nanotubes. Shock Vib. (2019). https://doi.org/10.1155/2019/3241698

    Article  Google Scholar 

  14. Gohardani, O., Elola, M.C., Elizetxea, C.: Potential and prospective implementation of carbon nanotubes on next generation aircraft and space vehicles: a review of current and expected applications in aerospace sciences. Prog. Aerosp. Sci. 70, 42–68 (2014)

    Google Scholar 

  15. Shen, H.S.: Nonlinear bending of functionally graded carbon nanotube-reinforced composite plates in thermal environments. Compos. Struct. 91, 9–19 (2009)

    Google Scholar 

  16. Lei, Z.X., Liew, K.M., Yu, J.L.: Buckling analysis of functionally graded carbon nanotube-reinforced composite plates using the element-free kp-Ritz method. Compos. Struct. 98, 160–168 (2013)

    MATH  Google Scholar 

  17. Zhang, L.W., Lei, L.X., Liew, K.M.: An element-free IMLS-Ritz framework for buckling analysis of FG-CNT reinforced composite thick plates resting on Winkler foundations. Eng. Anal. Bound. Elem. 58, 7–17 (2015)

    MathSciNet  MATH  Google Scholar 

  18. Kiani, Y.: Shear buckling of FG-CNT reinforced composite plates using Chebyshev–Ritz method. Compos. B Eng. 105, 176–187 (2016)

    Google Scholar 

  19. Kiani, Y.: Buckling of FG-CNT-reinforced composite plates subjected to parabolic loading. Acta Mech. 228(4), 1303–1319 (2017)

    MathSciNet  Google Scholar 

  20. Macias, E.G., Tembleque, L.R., Triguero, R.C., Saez, A.: Buckling analysis of functionally graded carbon nanotube-reinforced curved panels under axial compression and shear. Compos. B Eng. 108, 243–256 (2017)

    Google Scholar 

  21. Zghal, S., Frikha, A., Dammark, F.: Mechanical buckling analysis of functionally graded power-based and carbon nanotubes-reinforced composite plates and curved panels. Compos. B Eng. 150, 165–183 (2018)

    Google Scholar 

  22. Zhang, L.W., Liew, K.M.: Postbuckling analysis of axially compressed CNT reinforced functionally graded composite plates resting on Pasternak foundations using an element-free approach. Compos. Struct. 138, 40–51 (2016)

    Google Scholar 

  23. Trang, L.T.N., Tung, H.V.: Tangential edge constraint sensitivity of nonlinear stability of CNT-reinforced composite plates under compressive and thermomechanical loadings. J. Eng. Mech. ASCE 144(7), 04018056 (2018)

    Google Scholar 

  24. Shen, H.S.: Postbuckling of nanotube-reinforced composite cylindrical panels resting on elastic foundations subjected to lateral pressure in thermal environments. Eng. Struct. 122, 174–183 (2016)

    Google Scholar 

  25. Shen, H.S., Xiang, Y.: Postbuckling of axially compressed nanotube-reinforced composite cylindrical panels resting on elastic foundations in thermal environments. Compos. B Eng. 67, 50–61 (2014)

    Google Scholar 

  26. Shen, H.S., Xiang, Y.: Nonlinear response of nanotube-reinforced composite cylindrical panels subjected to combined loadings and resting on elastic foundations. Compos. Struct. 131, 939–950 (2015)

    Google Scholar 

  27. Macias, E.G., Tembleque, L.R., Triguero, R.C., Saez, A.: Eshelby–Mori–Tanaka approach for post-buckling analysis of axially compressed functionally graded CNT/polymer composite cylindrical panels. Compos. B Eng. 128, 208–224 (2017)

    Google Scholar 

  28. Tung, H.V., Trang, L.T.N.: Imperfection and tangential edge constraint sensitivities of thermomechanical nonlinear response of pressure-loaded carbon nanotube-reinforced composite cylindrical panels. Acta Mech. 229(5), 1949–1969 (2018)

    MathSciNet  Google Scholar 

  29. Trang, L.T.N., Tung, H.V.: Thermomechanical nonlinear analysis of axially compressed carbon nanotube-reinforced composite cylindrical panels resting on elastic foundations with tangentially restrained edges. J. Therm. Stresses 41(4), 418–438 (2018)

    Google Scholar 

  30. Trang, L.T.N., Tung, H.V.: Nonlinear stability of CNT-reinforced composite cylindrical panels with elastically restrained straight edges under combined thermomechanical loading conditions. J. Thermoplast. Compos. Mater. 33(2), 153–179 (2020). https://doi.org/10.1177/0892705718805134

    Article  Google Scholar 

  31. Trang, L.T.N., Tung, H.V.: Thermomechanical nonlinear stability of pressure-loaded CNT-reinforced composite doubly curved panels resting on elastic foundations. Nonlinear Eng. Model. Appl. 8, 582–596 (2019)

    Google Scholar 

  32. Trang, L.T.N., Tung, H.V.: Thermomechanical nonlinear stability of pressure-loaded functionally graded carbon nanotube-reinforced composite doubly curved panels with tangentially restrained edges. Proc. IMechE C J. Mech. Eng. Sci. 233(16), 5848–5859 (2019)

    Google Scholar 

  33. Shen, H.S.: Postbuckling of nanotube-reinforced composite cylindrical shells in thermal environments. Part I: axially-loaded shells. Compos. Struct. 93, 2096–2108 (2011)

    Google Scholar 

  34. Shen, H.S.: Postbuckling of nanotube-reinforced composite cylindrical shells in thermal environments. Part II: pressure-loaded shells. Compos. Struct. 93, 2496–2503 (2011)

    Google Scholar 

  35. Shen, H.S., Xiang, Y.: Postbuckling of nanotube-reinforced composite cylindrical shells under combined axial and radial mechanical loads in thermal environment. Compos. B Eng. 52, 311–322 (2013)

    Google Scholar 

  36. Shen, H.S.: Torsional postbuckling of nanotube-reinforced composite cylindrical shells in thermal environments. Compos. Struct. 116, 477–488 (2014)

    Google Scholar 

  37. Hieu, P.T., Tung, H.V.: Postbuckling behavior of CNT-reinforced composite cylindrical shell surrounded by an elastic medium and subjected to combined mechanical loads in thermal environments. J. Thermoplast. Compos. Mater. 32(10), 1319–1346 (2019). https://doi.org/10.1177/0892705718796551

    Article  Google Scholar 

  38. Ansari, R., Pourashraf, T., Gholami, R., Shahabodini, A.: Analytical solution for nonlinear postbuckling of functionally graded carbon nanotube-reinforced composite shells with piezoelectric layers. Compos. B Eng. 90, 267–277 (2016)

    Google Scholar 

  39. Ninh, D.G.: Nonlinear thermal torsional post-buckling of carbon nanotube-reinforced composite cylindrical shell with piezoelectric actuator layers surrounded by elastic medium. Thin-Walled Struct. 123, 528–538 (2018)

    Google Scholar 

  40. Ansari, R., Torabi, J.: Numerical study on the buckling and vibration of functionally graded carbon nanotube-reinforced composite conical shells under axial loading. Compos. B Eng. 95, 196–208 (2016)

    Google Scholar 

  41. Mehri, M., Asadi, H., Wang, Q.: Buckling and vibration analysis of a pressurized CNT reinforced functionally graded truncated conical shell under an axial compression using HDQ method. Comput. Methods Appl. Mech. Eng. 303, 75–100 (2016)

    MathSciNet  MATH  Google Scholar 

  42. Jam, J.E., Kiani, Y.: Buckling of pressurized functionally graded carbon nanotube reinforced conical shells. Compos. Struct. 125, 586–595 (2015)

    Google Scholar 

  43. Hieu, P.T., Tung, H.V.: Thermomechanical postbuckling of pressure-loaded CNT-reinforced composite cylindrical shells under tangential edge constraints and various temperature conditions. Polym. Compos. 41(1), 244–257 (2020). https://doi.org/10.1002/pc.25365

    Article  Google Scholar 

  44. Hieu, P.T., Tung, H.V.: Thermomechanical nonlinear buckling of pressure-loaded carbon nanotube reinforced composite toroidal shell segment surrounded by an elastic medium with tangentially restrained edges. Proc. IMechE C J. Mech. Eng. Sci. 233(9), 3193–3207 (2019)

    Google Scholar 

  45. Mirzaei, M., Kiani, Y.: Thermal buckling of temperature dependent FG-CNT reinforced composite plates. Meccanica 51(9), 2185–2201 (2016)

    MathSciNet  MATH  Google Scholar 

  46. Kiani, Y.: Thermal buckling of temperature-dependent FG-CNT-reinforced composite skew plates. J. Therm. Stresses 40(11), 1442–1460 (2017)

    Google Scholar 

  47. Shen, H.S., Zhang, C.L.: Thermal buckling and postbuckling behavior of functionally graded carbon nanotube-reinforced composite plates. Mater. Des. 31, 3403–3411 (2010)

    Google Scholar 

  48. Kiani, Y.: Thermal post-buckling of FG-CNT reinforced composite plates. Compos. Struct. 159, 299–306 (2017)

    Google Scholar 

  49. Tung, H.V.: Thermal buckling and postbuckling behavior of functionally graded carbon nanotube-reinforced composite plates resting on elastic foundations with tangential-edge restraints. J. Therm. Stresses 40(5), 641–663 (2017)

    Google Scholar 

  50. Tung, H.V., Trang, L.T.N.: Thermal postbuckling of shear deformable CNT-reinforced composite plates with tangentially restrained edges and temperature dependent properties. J. Thermoplast. Compos. Mater. 33(1), 97–124 (2020). https://doi.org/10.1177/0892705718804588

    Article  Google Scholar 

  51. Kiani, Y.: Thermal post-buckling of temperature dependent sandwich plates with FG-CNTRC face sheets. J. Therm. Stresses 41(7), 866–882 (2018)

    Google Scholar 

  52. Long, V.T., Tung, H.V.: Thermomechanical postbuckling behavior of CNT-reinforced composite sandwich plate models resting on elastic foundations with elastically restrained unloaded edges. J. Therm. Stresses 42(5), 658–680 (2019)

    Google Scholar 

  53. Long, V.T., Tung, H.V.: Thermal postbuckling behavior of CNT-reinforced composite sandwich plate models resting on elastic foundations with tangentially restrained edges and temperature-dependent properties. J. Thermoplast. Compos. Mater. (2019). https://doi.org/10.1177/0892705719828789

    Article  Google Scholar 

  54. Shen, H.S.: Thermal buckling and postbuckling behavior of functionally graded carbon nanotube-reinforced composite cylindrical shells. Compos. B Eng. 43, 1030–1038 (2012)

    Google Scholar 

  55. Shen, H.S., Xiang, Y.: Thermal postbuckling of nanotube-reinforced composite cylindrical panels resting on elastic foundations. Compos. Struct. 123, 383–392 (2015)

    Google Scholar 

  56. Hieu, P.T., Tung, H.V.: Thermal buckling and postbuckling of CNT-reinforced composite cylindrical shell surrounded by an elastic medium with tangentially restrained edges. J. Thermoplast. Compos. Mater. (2019). https://doi.org/10.1177/0892705719853611

    Article  Google Scholar 

  57. Mirzaei, M., Kiani, Y.: Thermal buckling of temperature dependent FG-CNT reinforced composite conical shells. Aerosp. Sci. Technol. 47, 42–53 (2015)

    MATH  Google Scholar 

  58. Tung, H.V.: Thermal and thermomechanical postbuckling of FGM sandwich plates resting on elastic foundations with tangential edge constraints and temperature dependent properties. Compos. Struct. 131, 1028–1039 (2015)

    Google Scholar 

  59. Tung, H.V.: Postbuckling of functionally graded cylindrical shells with tangential edge restraints and temperature-dependent properties. Acta Mech. 225, 1795–1808 (2014)

    MathSciNet  MATH  Google Scholar 

  60. Tung, H.V.: Nonlinear axisymmetric response of FGM shallow spherical shells with tangential edge constraints and resting on elastic foundations. Compos. Struct. 149, 231–238 (2016)

    Google Scholar 

  61. Zhang, L.W., Liew, K.M., Reddy, J.N.: Postbuckling of carbon nanotube reinforced functionally graded plates with edges elastically restrained against translation and rotation under axial compression. Comput. Methods Appl. Mech. Eng. 298, 1–28 (2016)

    MathSciNet  MATH  Google Scholar 

  62. Librescu, L., Oh, S.Y., Song, O.: Thin-walled beams made of functionally graded materials and operating in a high temperature environment: vibration and stability. J. Therm. Stresses 28, 649–712 (2005)

    Google Scholar 

  63. Sobhani, B., Aragh, A.H., Barati, Nasrollah, Hedayati, H.: Eshelby–Mori–Tanaka approach for vibrational behavior of continuously graded carbon nanotube-reinforced cylindrical panels. Compos. B Eng. 43, 1943–1954 (2012)

    Google Scholar 

  64. Duc, N.D., Tung, H.V.: Mechanical and thermal postbuckling of higher order shear deformable functionally graded plates on elastic foundations. Compos. Struct. 93, 2874–2881 (2011)

    Google Scholar 

  65. Tung, H.V., Duc, N.D.: Nonlinear response of shear deformable FGM curved panels resting on elastic foundations and subjected to mechanical and thermal loading conditions. Appl. Math. Model. 38, 2848–2866 (2014)

    MathSciNet  MATH  Google Scholar 

  66. Tung, H.V.: Nonlinear thermomechanical response of pressure-loaded doubly curved functionally graded material sandwich panels in thermal environments including tangential edge constraints. J. Sandw. Struct. Mater. 20(8), 974–1008 (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hoang Van Tung.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

The details of the coefficients \(A_{3}^{*},B_{1}^{*}\) and \(B_{2}^{*}\) in Eq. (22) are the following

$$\begin{aligned} A_{3}^{*}= & {} \frac{b_{24} }{b_{14} }\left( {\frac{\delta _{n}^{2} }{a}+\frac{\beta _{\mathrm{m}}^{2} }{R}} \right) -\frac{b_{34} }{b_{14}}, \nonumber \\ B_{1}^{*}= & {} \frac{b_{13} b_{32} -b_{12} b_{33} }{b_{22} b_{33} -b_{23} b_{32} }\left[ {\frac{b_{24} }{b_{14} }\left( {\frac{\delta _{n}^{2} }{a}+\frac{\beta _{\mathrm{m}}^{2} }{R}} \right) -\frac{b_{34} }{b_{14} }} \right] +\frac{b_{32} e_{51} \delta _{n} -b_{33} e_{41} \beta _{\mathrm{m}} }{b_{22} b_{33} -b_{23} b_{32} }K_{\mathrm{S}},\nonumber \\ B_{2}^{*}= & {} \frac{b_{12} b_{23} -b_{13} b_{22} }{b_{22} b_{33} -b_{23} b_{32} }\left[ {\frac{b_{24} }{b_{14} }\left( {\frac{\delta _{n}^{2} }{a}+\frac{\beta _{\mathrm{m}}^{2} }{R}} \right) -\frac{b_{34} }{b_{14} }} \right] +\frac{b_{23} e_{41} \beta _{\mathrm{m}} -b_{22} e_{51} \delta _{n} }{b_{22} b_{33} -b_{23} b_{32} }K_{\mathrm{S}}, \end{aligned}$$
(A1)

in which \(b_{ij} \,(i=1\div 3,j=2\div 4)\) have their forms as those given in the work [30].

The related quantities in Eqs. (25) and (26) are given as follows

$$\begin{aligned} a_{13}= & {} \left( {\frac{n^{2}}{R_{h}^{3} }R_{a} +\frac{m^{2}\pi ^{2}}{R_{h}^{3} L_{R}^{2} }} \right) \bar{{A}}_{3}^{*} -\frac{m^{2}n^{2}}{R_{h}^{4} L_{R}^{2} }\bar{{a}}_{51} \pi ^{2}\bar{{A}}_{3}^{*} -\frac{m^{3}\pi ^{3}}{R_{h}^{3} L_{R}^{3} }\bar{{a}}_{11} \bar{{B}}_{1}^{*} -\frac{mn^{2}\pi }{R_{h}^{3} L_{R} }\bar{{a}}_{21} \bar{{B}}_{1}^{*}\nonumber \\&-\frac{m^{2}n\pi ^{2}}{R_{h}^{3} L_{R}^{2} }\bar{{a}}_{31} \bar{{B}}_{2}^{*} -\frac{n^{3}}{R_{h}^{3} }\bar{{a}}_{41} \bar{{B}}_{2}^{*} +K_{1} \frac{E_{0\mathrm{m}} }{R_{h}^{4} }+K_{2} \frac{E_{0\mathrm{m}} }{R_{h}^{2} }\left( {\frac{m^{2}\pi ^{2}}{R_{h}^{2} L_{R}^{2} }+\frac{n^{2}}{R_{h}^{2} }} \right) ,\nonumber \\ L_{R}= & {} L/R, \quad \left( {\bar{{a}}_{11},\bar{{a}}_{21} ,\bar{{a}}_{31},\bar{{a}}_{41} } \right) =\frac{1}{h^{3}}\left( {a_{11},a_{21},a_{31},a_{41} } \right) , \quad \bar{{a}}_{51} =\frac{a_{51} }{h},\nonumber \\ \bar{{A}}_{3}^{*}= & {} \frac{A_{3}^{*} }{h^{2}}\,, \quad \left( {\bar{{B}}_{1}^{*},\bar{{B}}_{2}^{*} } \right) =\left( {B_{1}^{*},B_{2}^{*} } \right) h, \quad \left( {K_{1},K_{2} } \right) =\frac{R^{2}}{E_{0\mathrm{m}} h^{3}}\left( {k_{1} R^{2},k_{2} } \right) , \end{aligned}$$
(A2)

in which \(E_{0\mathrm{m}} \) is the value of \(E^{\mathrm{m}}\) calculated at room temperature \(T_{0} =300\,\hbox {K}\).

Appendix B

The coefficients \(g_{11}\) and \(g_{21}\) in Eq. (27) are evaluated as follows

$$\begin{aligned} g_{11} =\frac{R_{h}^{4} }{g_{31} }, \, g_{21} =-\frac{R_{h}^{3} }{\bar{{e}}_{11} g_{31} }\left[ {\bar{{e}}_{11} \bar{{e}}_{21T} -\nu _{12} \bar{{e}}_{21} \bar{{e}}_{11T} +\lambda \bar{{e}}_{11T} \left( {\nu _{12} \bar{{e}}_{21} +R_{a} \bar{{e}}_{11} } \right) } \right] , \end{aligned}$$
(B1)

in which

$$\begin{aligned} g_{31} =K_{1} E_{0\mathrm{m}} +R_{h}^{2} \bar{{e}}_{21} \left( {1-\nu _{12} \nu _{21} } \right) +\lambda R_{h}^{2} \left( {\nu _{12} \bar{{e}}_{21} +R_{a} \bar{{e}}_{11} } \right) \left( {\nu _{21} +R_{a} } \right) . \end{aligned}$$
(B2)

The detailed expressions for coefficients \(g_{12},g_{22}\) and \(g_{32}\) in Eq. (28) are as follows

$$\begin{aligned} g_{12}= & {} a_{13}, \quad g_{22} =\frac{\bar{{e}}_{21} }{R_{h}^{3} }n^{2}\left( {1-\nu _{12} \nu _{21} } \right) +\lambda \frac{\bar{{e}}_{11} }{R_{h} }\left( {\nu _{21} +R_{a} } \right) \left( {\frac{m^{2}\pi ^{2}}{R_{h}^{2} L_{R}^{2} }+\nu _{12} \frac{n^{2}\bar{{e}}_{21} }{R_{h}^{2} \bar{{e}}_{11} }} \right) , \nonumber \\ g_{32}= & {} \frac{n^{2}}{R_{h}^{2} \bar{{e}}_{11} }\left( {\bar{{e}}_{11} \bar{{e}}_{21T} -\nu _{12} \bar{{e}}_{21} \bar{{e}}_{11T} } \right) +\lambda \bar{{e}}_{11T} \left( {\frac{m^{2}\pi ^{2}}{R_{h}^{2} L_{R}^{2} }+\nu _{12} \frac{n^{2}\bar{{e}}_{21} }{R_{h}^{2} \bar{{e}}_{11} }} \right) . \end{aligned}$$
(B3)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hieu, P.T., Van Tung, H. Thermal and thermomechanical buckling of shear deformable FG-CNTRC cylindrical shells and toroidal shell segments with tangentially restrained edges. Arch Appl Mech 90, 1529–1546 (2020). https://doi.org/10.1007/s00419-020-01682-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-020-01682-7

Keywords

Navigation