Skip to main content
Log in

Bending analysis of functionally graded curved beams with different properties in tension and compression

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

In this study, we obtained analytical solutions for functionally graded curved beams with different properties in tension and compression, in which the moduli of elasticity in tension and compression are assumed as two different exponential functions. First, by determining the unknown neutral layer, we established a simplified mechanical model concerning tension and compression subzone and derived the one-dimensional solution (i.e., the solution in the scope of mechanics of materials). Given that the one-dimensional solution is a relatively simplified one, thus a comprehensive understanding of this problem is still needed. For this purpose, we established the consistency equation expressed in terms of stress function under two-dimensional theory of elasticity. Combining boundary conditions of inner and outer edges with continuity conditions of the neutral layer, we applied power series method for the solution of stress components under pure bending. The variations of radial and circumferential stresses in different cases of bimodular functionally graded parameters are comprehensively analyzed with numerical examples. Results indicate that the position of the neutral layer is generally related to the elastic modulus and the functionally graded coefficients of the materials. Moreover, the maximum tensile or compressive bending stress may not take place at the outer or inner edges of the curved beam but inside the beam, which should be given more attention in the analysis and design of functionally graded curved beams with different properties in tension and compression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Bertoldi, K., Bigoni, D., Drugan, W.J.: Nacre: an orthotropic and bimodular elastic material. Compos. Sci. Technol. 68(6), 1363–1375 (2008)

    Article  Google Scholar 

  2. Jones, R.M.: Apparent flexural modulus and strength of multimodulus materials. J. Compos. Mater. 10(4), 342–354 (1976)

    Article  Google Scholar 

  3. Bert, C.W.: Models for fibrous composites with different properties in tension and compression. ASME J. Eng. Mater. Technol. 99(4), 344–349 (1977)

    Article  Google Scholar 

  4. Ambartsumyan, S.A.: Elasticity Theory of Different Modulus (R.F. Wu and Y.Z. Zhang, Trans). Beijing: China Railway Publishing House (1986)

  5. El-Tahan, W.W., Staab, G.H., Advani, S.H., Lee, J.K.: Structural analysis of bimodular materials. J. Eng. Mech. 115(5), 963–981 (1989)

    Article  Google Scholar 

  6. Yao, W.J., Ye, Z.M.: Analytical solution for bending beam subject to lateral force with different modulus. Appl. Math. Mech. 25(10), 1107–1117 (2004)

    Article  MATH  Google Scholar 

  7. He, X.T., Chen, Q., Sun, J.Y., Zheng, Z.L., Chen, S.L.: Application of the Kirchhoff hypothesis to bending thin plates with different moduli in tension and compression. J. Mech. Mater. Struct. 5(5), 755–769 (2010)

    Article  Google Scholar 

  8. He, X.T., Hu, X.J., Sun, J.Y., Zheng, Z.L.: An analytical solution of bending thin plates with different moduli in tension and compression. Struct. Eng. Mech. 36(3), 363–380 (2010)

    Article  Google Scholar 

  9. Sun, J.Y., Zhu, H.Q., Qin, S.H., Yang, D.L., He, X.T.: A review on the research of mechanical problems with different moduli in tension and compression. J. Mech. Sci. Technol. 24(9), 1845–1854 (2010)

    Article  Google Scholar 

  10. Rizov, V.: Delamination fracture in a functionally graded multilayered beam with material nonlinearity. Arch. Appl. Mech. (Engl. Ed.) 87(6), 1037–1048 (2017)

    Article  Google Scholar 

  11. Koizumi, M.: FGM activities in Japan. Compos. Part B Eng. 28(1–2), 1–4 (1997)

    Article  Google Scholar 

  12. Sankar, B.V.: An elasticity solution for functionally graded beams. Compos. Sci. Technol. 61(5), 689–696 (2001)

    Article  Google Scholar 

  13. Sankar, B.V., Tzeng, J.T.: Thermal stresses in functionally graded beams. AIAA J. 40(40), 1228–1232 (2002)

    Article  Google Scholar 

  14. Bian, Z.G., Chen, W.Q., Lim, C.W., Zhang, N.: Analytical solutions for single- and multi-span functionally graded plates in cylindrical bending. Int. J. Solids Struct. 42(24), 6433–6456 (2005)

    Article  MATH  Google Scholar 

  15. Bodaghi, M., Saidi, A.R.: Thermoelastic buckling behavior of thick functionally graded rectangular plates. Arch. Appl. Mech. 81(11), 1555–1572 (2011)

    Article  MATH  Google Scholar 

  16. Alinaghizadeh, F., Kadkhodayan, M.: Investigation of nonlinear bending analysis of moderately thick functionally graded material sector plates subjected to thermomechanical loads by the GDQ method. J. Eng. Mech. 140(5), 04014012 (2014)

    Article  Google Scholar 

  17. Horgan, C.O., Chan, A.M.: The pressurized hollow cylinder or disk problem for functionally graded isotropic linearly elastic materials. J. Elast. 55(1), 43–59 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  18. Jabbari, M., Sohrabpour, S., Elsami, M.R.: Mechanical and thermal stresses in a functionally graded hollow cylinder due to radially symmetric loads. Int. J. Pres. Ves. Pip. 79(7), 493–497 (2002)

    Article  Google Scholar 

  19. Andrianov, I.I., Awrejcewicz, J., Diskovsky, A.A.: Optimal design of a functionally graded corrugated cylindrical shell subjected to axisymmetric loading. Arch. Appl. Mech. 88(6), 1027–1039 (2018)

    Article  Google Scholar 

  20. Barretta, R.: On the relative position of twist and shear centres in the orthotropic and fiberwise homogeneous Saint-Venant beam theory. Int. J. Solids Struct. 49(21), 3038–3046 (2012)

    Article  Google Scholar 

  21. Barretta, R.: Analogies between Kirchhoff plates and Saint-Venant beams under torsion. Acta Mech. 224(12), 2955–2964 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  22. Barretta, R.: Analogies between Kirchhoff plates and Saint-Venant beams under flexure. Acta Mech. 225(7), 2075–2083 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  23. Čanadija, M., Barretta, R., Marotti de Sciarra, F.: On functionally graded Timoshenko nonisothermal nanobeams. Compos. Struct. 135, 286–296 (2016)

    Article  MATH  Google Scholar 

  24. Tutuncu, N.: Plane stress analysis of end-loaded orthotropic curved beams of constant thickness with applications to full rings. J. Mech. Des. 120(2), 368–374 (1998)

    Article  Google Scholar 

  25. Segura, J.M., Armengaud, G.: Analytical formulation of stresses in curved composite beams. Arch. Appl. Mech. 68(3–4), 206–213 (1998)

    Article  MATH  Google Scholar 

  26. Lim, C.W., Wang, C.M., Kitipornchai, S.: Timoshenko curved beam bending solutions in terms of Euler–Bernoulli solutions. Arch. Appl. Mech. 67(3), 179–190 (1997)

    Article  MATH  Google Scholar 

  27. Ramana Murthy, P.V., Rao, K.P.: Analysis of curved laminated beam of bimodulus composite materials. J. Compos. Mater. 17(5), 435–448 (1983)

    Article  Google Scholar 

  28. Fraternali, F., Bilotti, G.: Nonlinear elastic stress analysis in curved composite beam. Comput. Struct. 62(5), 837–859 (1997)

    Article  MATH  Google Scholar 

  29. He, X.T., Xu, P., Sun, J.Y., Zheng, Z.L.: Analytical solutions for bending curved beams with different moduli in tension and compression. Mech. Adv. Mater. Struct. 22(5), 325–337 (2015)

    Article  Google Scholar 

  30. Dryden, J.: Bending of inhomogeneous curved bars. Int. J. Solids Struct. 44(11), 4158–4166 (2007)

    Article  MATH  Google Scholar 

  31. Wang, M.Q., Liu, Y.H.: Elasticity solutions for orthotropic functionally graded curved beams. Eur. J. Mech. A/Solids 37, 8–16 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  32. Shi, Z.F.: Bending behavior of piezoelectric curved actuator. Smart Mater. Struct. 14(4), 835–842 (2005)

    Article  Google Scholar 

  33. Shi, Z.F., Zhang, T.T.: Bending analysis of a piezoelectric curved actuator with a generally graded property for the piezoelectric parameter. Smart Mater. Struct. 17(4), 1–7 (2008)

    Article  Google Scholar 

  34. Zhang, T.T., Shi, Z.F.: Two-dimensional exact analysis for piezoelectric curved actuators. J. Micromech. Microeng. 16(3), 640–647 (2006)

    Article  Google Scholar 

  35. Nie, G.J., Zhong, Z.: Exact solutions for elastoplastic stress distribution in functionally graded curved beams subjected to pure bending. Mech. Adv. Mater. Struct. 19(6), 474–484 (2012)

    Article  Google Scholar 

  36. Pydah, A., Sabale, A.: Static analysis of bi-directional functionally graded curved beams. Compos. Struct. 160(15), 867–876 (2017)

    Article  Google Scholar 

  37. Ansari, R., Gholami, R., Sahmani, S.: Size-dependent vibration of functionally graded curved microbeams based on the modified strain gradient elasticity theory. Arch. Appl. Mech. 83(10), 1439–1449 (2013)

    Article  MATH  Google Scholar 

  38. Yu, L.Y., Zhang, L.L., Shang, L.G., Sun, Z.D., Gao, E.L., Jing, W.Q., Gao, Y.: Bending solutions of functionally graded curved-beam. Eng. Mech. 31(12), 4–10 (2014)

    Google Scholar 

  39. Yao, W.J., Ye, Z.M.: Internal forces for statically indeterminate structures having different moduli in tension and compression. J. Eng. Mech. 132(7), 739–746 (2006)

    Article  Google Scholar 

  40. Faghidian, S.A.: Analytical inverse solution of eigenstrains and residual fields in autofrettaged thick-walled tubes. J. Press. Vess.-T ASME 139(3), 031205-1 (2017)

    Google Scholar 

  41. Sun, X.F., Fang, X.S., Guan, L.T.: Mechanics of Materials, 2nd edn. Higher Education Press, Beijing (1987)

    Google Scholar 

Download references

Acknowledgements

This project is supported by National Natural Science Foundation of China (Grant Nos. 11572061 and 11772072).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-ting He.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

The coefficients \(A_i^{+/-} (i=1,2,3)\) of transcendental equation (11), which may be used for the determination of the unknown neutral layer, are obtained as

$$\begin{aligned} \left\{ {\begin{array}{l} A_{\mathrm{1}}^+ =\int _0^{h_1 } {\hbox {e}^{\alpha _1 y/h}y\hbox {d}y} =-\left( {\frac{h^{2}}{\alpha _1^2 }-\frac{hh_1 }{\alpha _1 }} \right) \hbox {e}^{\alpha _1 h_1 /h}+\frac{h^{2}}{\alpha _1^2 }, \\ A_{\mathrm{1}}^- =\int _{-h_2 }^0 {\hbox {e}^{\alpha _2 y/h}y\hbox {d}y} =\left( {\frac{h^{2}}{\alpha _2^2 }+\frac{hh_2 }{\alpha _2 }} \right) \hbox {e}^{-\alpha _2 h_2 /h}-\frac{h^{2}}{\alpha _2^2 }, \\ A_2^+ =-\int _0^{h_1 } {\hbox {e}^{\alpha _1 y/h}y^{2}\hbox {d}y} =-\left( {\frac{2h^{3}}{\alpha _1^3 }-\frac{2h^{2}h_1 }{\alpha _1^2 }+\frac{hh_1^2 }{\alpha _1 }} \right) \hbox {e}^{\alpha _1 h_1 /h}+\frac{2h^{3}}{\alpha _1^3 }, \\ A_2^- =-\int _{-h_2 }^0 {\hbox {e}^{\alpha _2 y/h}y^{2}\hbox {d}y} =\left( {\frac{2h^{2}h_2 }{\alpha _2^2 }+\frac{2h^{3}}{\alpha _2^3 }+\frac{hh_2^2 }{\alpha _2 }} \right) \hbox {e}^{-\alpha _2 h_2 /h}-\frac{2h^{3}}{\alpha _2^3 }, \\ A_{\mathrm{3}}^+ =\int _0^{h_1 } {\hbox {e}^{\alpha _1 y/h}y^{3}\hbox {d}y} =-\left( {\frac{6h^{4}}{\alpha _1^4 }-\frac{6h^{3}h_1 }{\alpha _1^3 }+\frac{3h^{2}h_1^2 }{\alpha _1^2 }-\frac{hh_1^3 }{\alpha _1 }} \right) \hbox {e}^{\alpha _1 h_1 /h}+\frac{6h^{4}}{\alpha _1^4 }, \\ A_{\mathrm{3}}^- =\int _{-h_2 }^0 {\hbox {e}^{\alpha _2 y/h}y^{3}\hbox {d}y} =\left( {\frac{3h^{2}h_2^2 }{\alpha _2^2 }+\frac{hh_2^3 }{\alpha _2 }+\frac{6h^{4}}{\alpha _2^4 }+\frac{6h^{3}h_2 }{\alpha _2^3 }} \right) \hbox {e}^{-\alpha _2 h_2 /h}-\frac{6h^{4}}{\alpha _2^4 }. \\ \end{array}} \right. \end{aligned}$$
(A.1)

The process obtaining the dimensionless stress function is as follows: firstly by making a transformation \(X=x-s\) to reduce the items in coefficients of the power function, thus Eqs. (30) and (28) will be rewritten as

$$\begin{aligned} \varPhi ^{+/-}(X)=\sum _{n=0}^\infty {a_n^{+/-} X^{n}} , \end{aligned}$$
(A.2)

and

$$\begin{aligned}&(X+s)^{3}\frac{\hbox {d}^{4}\varPhi ^{+/-}}{\hbox {d}X^{4}}+[2(X+s)^{2}-2\alpha _i (X+s)^{3}]\frac{\hbox {d}^{3}\varPhi ^{+/-}}{\hbox {d}X^{3}}+[\alpha _i^2 (X+s)^{3}+\mu \alpha _i (X+s)^{2} \nonumber \\&\quad -\,2\alpha _i (X+s)^{2}-(X+s)]\frac{\hbox {d}^{2}\varPhi ^{+/-}}{\hbox {d}X^{2}}+[\alpha _i (X+s)+1-\mu \alpha _i^2 (X+s)^{2}]\frac{\hbox {d}\varPhi ^{+/-}}{\hbox {d}X}=\hbox {0,} \end{aligned}$$
(A.3)

For solving the equation above, we need to calculate the first-order to the fourth-order derivatives of the dimensionless stress function, respectively

$$\begin{aligned} \left. {\begin{array}{l} \frac{\hbox {d}\varPhi ^{+/-}\left( X \right) }{\hbox {d}X}=a_1^{+/-} +2a_2^{+/-} X+3a_3^{+/-} X^{2}+4a_4^{+/-} X^{3}+{\ldots }+na_n^{+/-} X^{n-1}, \\ \frac{\hbox {d}^{2}\varPhi ^{+/-}\left( X \right) }{\hbox {d}X^{2}}=2a_{\mathrm{2}}^{+/-} +6a_3^{+/-} X+12a_4^{+/-} X^{2}+{\ldots }+n(n-1)a_n^{+/-} X^{n-2}, \\ \frac{\hbox {d}^{3}\varPhi ^{+/-}\left( X \right) }{\hbox {d}X^{3}}=6a_3^{+/-} +24a_4^{+/-} X+60a_5^{+/-} X^{2}+{\ldots }+n(n-1)(n-2)a_n^{+/-} X^{n-3}, \\ \frac{\hbox {d}^{4}\varPhi ^{+/-}\left( X \right) }{\hbox {d}X^{4}}=24a_4^{+/-} +120a_5^{+/-} X+360a_6^{+/-} X^{2}+{\ldots }+n(n-1)(n-2)(n-3)a_6^{+/-} X^{n-4}. \\ \end{array}} \right\} \nonumber \\ \end{aligned}$$
(A.4)

Substituting them into Eq. (A.3) will yield

$$\begin{aligned}&(X+s)^{3}[24a_4^{+/-} +120a_5^{+/-} X+360a_6^{+/-} X^{2}+{\ldots }+n(n-1)(n-2)(n-3)a_6^{+/-} X^{n-4}] \nonumber \\&\quad +\,[2(X+s)^{2}-2\alpha _i (X+s)^{3}][6a_3^{+/-} +24a_4^{+/-} X+60a_5^{+/-} X^{2}+{\ldots }+n(n-1)(n-2)a_n^{+/-} X^{n-3}] \nonumber \\&\quad +\,[\alpha _i^2 (X+s)^{3}+\mu \alpha _i (X+s)^{2}-2\alpha _i (X+s)^{2}-(X+s)][2a_1^{+/-} +6a_3^{+/-} X+12a_4^{+/-} X^{2}+{\ldots } \nonumber \\&\quad +\,n(n-1)a_n^{+/-} X^{n-2}]+[\alpha _i (X+s)+1-\mu \alpha _i^2 (X+s)^{2}][a_1^{+/-} +2a_2^{+/-} X+3a_3^{+/-} X^{2} \nonumber \\&\quad +4a_4^{+/-} X^{3}+{\ldots } +\,na_n^{+/-} X^{n-1}]=0. \end{aligned}$$
(A.5)

Then, expanding the item of \(\left( {X+s} \right) ^{n}\) and merging coefficients of \(X^{n}\) by the same exponents, Eq. (A.5) may be rewritten as

$$\begin{aligned}&2\alpha _i \mu s^{2}a_2^{+/-} -\alpha _i^2 \mu s^{2}a_2^{+/-} -4\alpha _i s^{2}a_2^{+/-} +\alpha _i sa_1^{+/-} +a_1^{+/-} +2\alpha _i^2 s^{3}a_2^{+/-} -2sa_2^{+/-} \nonumber \\&\quad +\,24s^{3}a_4^{+/-} +12s^{2}a_3^{+/-} -12\alpha _i s^{3}a_3^{+/-} \nonumber \\&\quad +\,(-2\alpha _i^2 \mu s^{2}a_2^{+/-} +6\alpha _i^2 s^{3}a_3^{+/-} -2\alpha _i^2 \mu sa_1^{+/-} +6\alpha _i^2 s^{2}a_2^{+/-} +6\alpha _i \mu s^{2}a_3^{+/-} -48\alpha _i s^{3}a_4^{+/-} \nonumber \\&\quad +\,4\alpha _i \mu sa_2^{+/-} -48\alpha _i s^{2}a_3^{+/-} +120s^{3}a_5^{+/-} -6\alpha _i sa_2^{+/-} +120s^{2}a_4^{+/-} +\alpha _i a_1^{+/-} \nonumber \\&\quad +\,18sa_3^{+/-} )X \nonumber \\&\quad +\,(-3\alpha _i^2 \mu s^{2}a_3^{+/-} +12\alpha _i^2 s^{3}a_4^{+/-} -4\alpha _i^2 \mu sa_2^{+/-} +18\alpha _i^2 s^{2}a_3^{+/-} +12\alpha _i \mu s^{2}a_4^{+/-} -120\alpha _i s^{3}a_5^{+/-} \nonumber \\&\quad -\,\alpha _i^2 \mu a_1^{+/-} +6\alpha _i^2 sa_2^{+/-} +12\alpha _i \mu sa_3^{+/-} -168\alpha _i s^{2}a_4^{+/-} +360s^{3}a_6^{+/-} +2\alpha _i \mu a_2^{+/-} -57\alpha _i sa_3^{+/-} \nonumber \\&\quad +\,480s^{2}a_5^{+/-} -2\alpha _i a_2^{+/-} +156sa_4^{+/-} +9a_3^{+/-} )X^{2} \nonumber \\&\quad +\,(-4\alpha _i^2 \mu s^{2}a_4^{+/-} +20\alpha _i^2 s^{3}a_5^{+/-} -6\alpha _i^2 \mu sa_3^{+/-} +36\alpha _i^2 s^{2}a_4^{+/-} +20\alpha _i \mu s^{2}a_5^{+/-} \nonumber \\&\quad -\,240\alpha _i s^{3}a_6^{+/-} -2\alpha _i^2 \mu a_2^{+/-} +18\alpha _i^2 sa_3^{+/-} +24\alpha _i \mu sa_4^{+/-} -400\alpha _i s^{2}a_5^{+/-} +840s^{3}a_7^{+/-} \nonumber \\&\quad +\,2\alpha _i^2 a_2^{+/-} +6\alpha _i \mu a_3^{+/-} -188\alpha _i sa_4^{+/-} +\,1320s^{2}a_6^{+/-} -21\alpha _i a_3^{+/-} +580sa_5^{+/-} \nonumber \\&\quad +\,64a_4^{+/-} )X^{3} \nonumber \\&\quad +\,(-5\alpha _i^2 \mu s^{2}a_5^{+/-} +30\alpha _i^2 s^{3}a_6^{+/-} -8\alpha _i^2 \mu sa_4^{+/-} +60\alpha _i^2 s^{2}a_5^{+/-} +30\alpha _i \mu s^{2}a_6^{+/-} \nonumber \\&\quad +225a_5^{+/-} -420\alpha _i s^{3}a_7^{+/-} -3\alpha _i^2 \mu a_3^{+/-} +36\alpha _i^2 sa_4^{+/-} +40\alpha _i \mu sa_5^{+/-} -780\alpha _i s^{2}a_6^{+/-} \nonumber \\&\quad +\,1680s^{3}a_8^{+/-} +6\alpha _i^2 a_3^{+/-} +12\alpha _i \mu a_4^{+/-} -435\alpha _i sa_5^{+/-} +2940s^{2}a_7^{+/-} -68\alpha _i a_4^{+/-} \nonumber \\&\quad +\,1530sa_6^{+/-} )X^{4} \nonumber \\&\quad +\,(-6\alpha _i^2 \mu s^{2}a_6^{+/-} +42\alpha _i^2 s^{3}a_7^{+/-} -10\alpha _i^2 \mu sa_5^{+/-} +90\alpha _i^2 s^{2}a_6^{+/-} +42\alpha _i \mu s^{2}a_7^{+/-} \nonumber \\&\quad -\,672\alpha _i s^{3}a_8^{+/-} -4\alpha _i^2 \mu a_4^{+/-} +60\alpha _i^2 sa_5^{+/-} -1344\alpha _i s^{2}a_7^{+/-} +3204s^{3}a_9^{+/-} \nonumber \\&\quad +\,12\alpha _i^2 a_4^{+/-} +20\alpha _i \mu sa_5^{+/-} -834\alpha _i s^{2}a_6^{+/-} +5712s^{2}a_8^{+/-} -155\alpha _i a_5^{+/-} +3318sa_7^{+/-} \nonumber \\&\quad +\,576a_6^{+/-} )X^{5} \nonumber \\&\quad +\,(-7\alpha _i^2 \mu s^{2}a_7^{+/-} +56\alpha _i^2 s^{3}a_8^{+/-} -12\alpha _i^2 \mu sa_6^{+/-} +126\alpha _i^2 s^{2}a_7^{+/-} +56\alpha _i \mu s^{2}a_8^{+/-} \nonumber \\&\quad -\,1008\alpha _i s^{3}a_9^{+/-} -5\alpha _i^2 \mu a_5^{+/-} +90\alpha _i^2 sa_6^{+/-} +84\alpha _i \mu sa_7^{+/-} -2128\alpha _i s^{2}a_8^{+/-} +5040s^{3}a_{10}^{+/-} \nonumber \\&\quad +\,20\alpha _i^2 a_5^{+/-} +30\alpha _i \mu a_6^{+/-} -1421\alpha _i sa_7^{+/-} +10080s^{2}a_9^{+/-} -294\alpha _i a_6^{+/-} +6328sa_8^{+/-} \nonumber \\&\quad +\,1225a_7^{+/-} )X^{6} \nonumber \\&\quad +\,(-8\alpha _i^2 \mu s^{2}a_8^{+/-} +72\alpha _i^2 s^{3}a_9^{+/-} -14\alpha _i^2 \mu sa_7^{+/-} +168\alpha _i^2 s^{2}a_6^{+/-} +72\alpha _i \mu s^{2}a_9^{+/-} \nonumber \\&\quad -\,1440\alpha _i s^{3}a_{10}^{+/-} -6\alpha _i^2 \mu a_6^{+/-} +126\alpha _i^2 sa_7^{+/-} +112\alpha _i \mu sa_6^{+/-} +30\alpha _i^2 a_6^{+/-} -3168\alpha _i s^{2}a_9^{+/-} \nonumber \\&\quad +\,7920s^{3}a_{11}^{+/-} +42\alpha _i \mu a_7^{+/-} -2232\alpha _i sa_8^{+/-} +16560s^{2}a_{10}^{+/-} -497\alpha _i a_7^{+/-} +11016sa_9^{+/-} \nonumber \\&\quad +\,2304a_6^{+/-} )X^{7} \nonumber \\&\quad +\,(-9\alpha _i \mu s^{2}a_9^{+/-} +90\alpha _i^2 s^{3}a_{10}^{+/-} -16\alpha _i^2 \mu sa_8^{+/-} +216\alpha _i^2 s^{2}a_9^{+/-} +90\alpha _i \mu s^{2}a_{10}^{+/-} -1980\alpha _i s^{3}a_{11}^{+/-} \nonumber \\&\quad -\,7\alpha _i^2 \mu a_7^{+/-} +168\alpha _i^2 sa_8^{+/-} +144\alpha _i \mu sa_9^{+/-} -4500\alpha _i s^{2}a_{10}^{+/-} +11880s^{3}a_{12}^{+/-} +42\alpha _i^2 a_7^{+/-} \nonumber \\&\quad +\,56\alpha _i \mu sa_8^{+/-} -3303\alpha _i sa_9^{+/-} -776\alpha _i a_8^{+/-} +25740s^{2}a_{11}^{+/-} +17910sa_{10}^{+/-} \nonumber \\&\quad +\,3969a_9^{+/-} )X^{8}+{\ldots }=0, \end{aligned}$$
(A.6)

It is obvious that the coefficients and the constants of the term must be zero, so that the left expression of the equation equals zero permanently. Therefore, the following recursive formulas may be obtained

$$\begin{aligned}&2\alpha _i \mu s^{2}a_2^{+/-} -\alpha _i^2 \mu s^{2}a_2^{+/-} -4\alpha _i s^{2}a_2^{+/-} +\alpha _i sa_1^{+/-} +a_1^{+/-} +2\alpha _i^2 s^{3}a_2^{+/-} -2sa_2^{+/-} +24s^{3}a_4^{+/-} \nonumber \\&\quad +\,12s^{2}a_3^{+/-} -12\alpha _i s^{3}a_3^{+/-} =0 \nonumber \\&\quad -\,2\alpha _i^2 \mu s^{2}a_2^{+/-} +6\alpha _i^2 s^{3}a_3^{+/-} -2\alpha _i^2 \mu sa_1^{+/-} +6\alpha _i^2 s^{2}a_2^{+/-} +6\alpha _i \mu s^{2}a_3^{+/-} +18sa_3^{+/-} -48\alpha _i s^{3}a_4^{+/-} \nonumber \\&\quad +\,4\alpha _i \mu sa_2^{+/-} -48\alpha _i s^{2}a_3^{+/-} +120s^{3}a_5^{+/-} -6\alpha _i sa_2^{+/-} +120s^{2}a_4^{+/-} +\alpha _i a_1^{+/-} =0 \nonumber \\&\quad -\,3\alpha _i^2 \mu s^{2}a_3^{+/-} +12\alpha _i^2 s^{3}a_4^{+/-} -4\alpha _i^2 \mu sa_2^{+/-} +18\alpha _i^2 s^{2}a_3^{+/-} +12\alpha _i \mu s^{2}a_4^{+/-} -120\alpha _i s^{3}a_5^{+/-} \nonumber \\&\quad -\,\alpha _i^2 \mu a_1^{+/-} +6\alpha _i^2 sa_2^{+/-} +12\alpha _i \mu sa_3^{+/-} -168\alpha _i s^{2}a_4^{+/-} +360s^{3}a_6^{+/-} +2\alpha _i \mu a_2^{+/-} -57\alpha _i sa_3^{+/-} \nonumber \\&\quad +\,480s^{2}a_5^{+/-} -2\alpha _i a_2^{+/-} +156sa_4^{+/-} +9a_3^{+/-} =0 \nonumber \\&\quad -\,4\alpha _i^2 \mu s^{2}a_4^{+/-} +20\alpha _i^2 s^{3}a_5^{+/-} -6\alpha _i^2 \mu sa_3^{+/-} +36\alpha _i^2 s^{2}a_4^{+/-} +20\alpha _i \mu s^{2}a_5^{+/-} -240\alpha _i s^{3}a_6^{+/-} \nonumber \\&\quad -\,2\alpha _i^2 \mu a_2^{+/-} +18\alpha _i^2 sa_3^{+/-} +24\alpha _i \mu sa_4^{+/-} -400\alpha _i s^{2}a_5^{+/-} +840s^{3}a_7^{+/-} +2\alpha _i^2 a_2^{+/-} +6\alpha _i \mu a_3^{+/-} \nonumber \\&\quad -\,188\alpha _i sa_4^{+/-} +1320s^{2}a_6^{+/-} -21\alpha _i a_3^{+/-} +580sa_5^{+/-} +64a_4^{+/-} =0 \nonumber \\&\quad -\,5\alpha _i^2 \mu s^{2}a_5^{+/-} +30\alpha _i^2 s^{3}a_6^{+/-} -8\alpha _i^2 \mu sa_4^{+/-} +60\alpha _i^2 s^{2}a_5^{+/-} +30\alpha _i \mu s^{2}a_6^{+/-} +225a_5^{+/-} \nonumber \\&\quad -\,420\alpha _i s^{3}a_7^{+/-} -3\alpha _i^2 \mu a_3^{+/-} +36\alpha _i^2 sa_4^{+/-} +40\alpha _i \mu sa_5^{+/-} -780\alpha _i s^{2}a_6^{+/-} +1680s^{3}a_8^{+/-} \nonumber \\&\quad +\,6\alpha _i^2 a_3^{+/-} +12\alpha _i \mu a_4^{+/-} -435\alpha _i sa_5^{+/-} +2940s^{2}a_7^{+/-} -68\alpha _i a_4^{+/-} +1530sa_6^{+/-} =0 \nonumber \\&\quad -\,6\alpha _i^2 \mu s^{2}a_6^{+/-} +42\alpha _i^2 s^{3}a_7^{+/-} -10\alpha _i^2 \mu sa_5^{+/-} +90\alpha _i^2 s^{2}a_6^{+/-} +42\alpha _i \mu s^{2}a_7^{+/-} +576a_6^{+/-} \nonumber \\&\quad -\,672\alpha _i s^{3}a_8^{+/-} -4\alpha _i^2 \mu a_4^{+/-} +60\alpha _i^2 sa_5^{+/-} -1344\alpha _i s^{2}a_7^{+/-} +3204s^{3}a_9^{+/-} +12\alpha _i^2 a_4^{+/-} \nonumber \\&\quad +\,20\alpha _i \mu sa_5^{+/-} -834\alpha _i s^{2}a_6^{+/-} +5712s^{2}a_8^{+/-} -155\alpha _i a_5^{+/-} +3318sa_7^{+/-} =0 \nonumber \\&\quad -\,7\alpha _i^2 \mu s^{2}a_7^{+/-} +56\alpha _i^2 s^{3}a_8^{+/-} -12\alpha _i^2 \mu sa_6^{+/-} +126\alpha _i^2 s^{2}a_7^{+/-} +56\alpha _i \mu s^{2}a_8^{+/-} -1008\alpha _i s^{3}a_9^{+/-} \nonumber \\&\quad -\,5\alpha _i^2 \mu a_5^{+/-} +90\alpha _i^2 sa_6^{+/-} +84\alpha _i \mu sa_7^{+/-} -2128\alpha _i s^{2}a_8^{+/-} +20\alpha _i^2 a_5^{+/-} +30\alpha _i \mu a_6^{+/-} \nonumber \\&\quad -\,1421\alpha _i sa_7^{+/-} +10080s^{2}a_9^{+/-} -294\alpha _i a_6^{+/-} +6328sa_8^{+/-} +5040s^{3}a_{10}^{+/-} +1225a_7^{+/-} =0, \nonumber \\&\quad {\ldots } \end{aligned}$$
(A.7)

Solving the recursive formulas in Eq. (A.7), the unknown coefficients \(a_4^{+/-} \), \(a_5^{+/-} \), \(a_6^{+/-} \), \(a_7^{+/-} \) and \(a_8^{+/-} \)... may be expressed as follows, with the help of constants \(a_1^{+/-} \), \(a_2^{+/-} \) and \(a_3^{+/-} \):

$$\begin{aligned} a_4^{+/-}= & {} -\frac{1}{24s^{3}}(\alpha _i^ 2 \mu s^{2}a_1^{+/-} +2\alpha _i^ 2 s^{3}a_2^{+/-} +2\alpha _i \mu s^{2}a_2^{+/-} -12\alpha _i s^{3}a_3^{+/-} -4\alpha _i s^{2}a_2^{+/-} +a_1^{+/-} \nonumber \\&+\,\alpha _i sa_1^{+/-} +12s^{2}a_3^{+/-} -2sa_2^{+/-} ) \nonumber \\ a_5^{+/-}= & {} -\frac{1}{120s^{4}}(2\alpha _i^ 3 \mu s^{3}a_1^{+/-} +4\alpha _i^ 3 s^{4}a_2^{+/-} +2\alpha _i^ 2 \mu s^{3}a_2^{+/-} -18\alpha _i^ 2 s^{4}a_3^{+/-} -7\alpha _i^ 2 \mu s^{2}a_1^{+/-} \nonumber \\&\quad -\,12\alpha _i^ 2 s^{3}a_2^{+/-} +6\alpha _i \mu s^{3}a_3^{+/-} +2\alpha _i^ 2 s^{2}a_1^{+/-} -6\alpha _i \mu s^{2}a_2^{+/-} +36\alpha _i s^{3}a_3^{+/-} +10\alpha _i s^{2}a_2^{+/-} \nonumber \\&-\,2\alpha _i sa_1^{+/-} -42s^{2}a_3^{+/-} +10sa_2^{+/-} -5a_1^{+/-} ) \nonumber \\ a_6^{+/-}= & {} -\frac{1}{720s^{5}}(3\alpha _i^ 4 \mu s^{4}a_1^{+/-} +6\alpha _i^ 4 s^{5}a_2^{+/-} -\alpha _i^ 3 \mu ^{2}s^{3}a_1^{+/-} -24\alpha _i^ 3 s^{5}a_3^{+/-} -16\alpha _i^ 3 \mu s^{3}a_1^{+/-} \nonumber \\&\quad -\,24\alpha _i^ 3 s^{4}a_2^{+/-} -2\alpha _i^ 2 \mu ^{2}s^{3}a_2^{+/-} +18\alpha _i^ 2 \mu s^{4}a_3^{+/-} +3\alpha _i^ 3 s^{3}a_1^{+/-} -4\alpha _i^ 2 \mu s^{3}a_2^{+/-} -54sa_2^{+/-} \nonumber \\&+\,72\alpha _i^ 2 s^{4}a_3^{+/-} +40\alpha _i^ 2 \mu s^{2}a_1^{+/-} +48\alpha _i^ 2 s^{3}a_2^{+/-} -36\alpha _i \mu s^{3}a_3^{+/-} -7\alpha _i^ 2 s^{2}a_1^{+/-} +28\alpha _i \mu s^{2}a_2^{+/-} \nonumber \\&-\,162\alpha _i s^{3}a_3^{+/-} -\alpha _i \mu sa_1^{+/-} -40\alpha _i s^{2}a_2^{+/-} +7\alpha _i sa_1^{+/-} +198s^{2}a_3^{+/-} +27a_1^{+/-} ) \nonumber \\ a_7^{+/-}= & {} -\frac{1}{5040s^{6}}(4\alpha _i^ 5 \mu s^{5}a_1^{+/-} +8\alpha _i^ 5 s^{6}a_2^{+/-} -3\alpha _i^ 4 \mu ^{2}s^{4}a_1^{+/-} -4\alpha _i^ 4 \mu s^{5}a_2^{+/-} +336sa_2^{+/-} \nonumber \\&-\,30\alpha _i^ 4 s^{6}a_3^{+/-} -27\alpha _i^ 4 \mu s^{4}a_1^{+/-} -40\alpha _i^ 4 s^{5}a_2^{+/-} -4\alpha _i^ 3 \mu ^{2}s^{4}a_2^{+/-} +36\alpha _i^ 3 \mu s^{5}a_3^{+/-} \nonumber \\&+\,4\alpha _i^ 4 s^{4}a_1^{+/-} +12\alpha _i^ 3 \mu ^{2}s^{3}a_1^{+/-} +16\alpha _i^ 3 \mu s^{4}a_2^{+/-} +120\alpha _i^ 3 s^{5}a_3^{+/-} -6\alpha _i^ 2 \mu ^{2}s^{4}a_3^{+/-} \nonumber \\&+\,104\alpha _i^ 3 \mu s^{3}a_1^{+/-} +124\alpha _i^ 3 s^{4}a_2^{+/-} +16\alpha _i^ 2 \mu ^{2}s^{3}a_2^{+/-} -138\alpha _i^ 2 \mu s^{4}a_3^{+/-} -14\alpha _i^ 3 s^{3}a_1^{+/-} \nonumber \\&+\,16\alpha _i^ 2 \mu s^{3}a_2^{+/-} -396\alpha _i^ 2 s^{4}a_3^{+/-} -258\alpha _i^ 2 \mu s^{2}a_1^{+/-} -260\alpha _i^ 2 s^{3}a_2^{+/-} +228\alpha \mu s^{3}a_3^{+/-} \nonumber \\&+\,36\alpha _i^ 2 s^{2}a_1^{+/-} -164\alpha _i \mu s^{2}a_2^{+/-} +924\alpha _i s^{3}a_3^{+/-} +10\alpha _i \mu sa_1^{+/-} +212\alpha _i s^{2}a_2^{+/-} -34\alpha _i sa_1^{+/-} \nonumber \\&\quad -\,1152s^{2}a_3^{+/-} -168a_1^{+/-} ) \nonumber \\ a_8^{+/-}= & {} -\frac{1}{40320s^{7}}(5\alpha _i^6 \mu s^{6}a_1^{+/-} +10\alpha _i^6 s^{7}a_2^{+/-} -6\alpha _i^5 \mu ^{2}s^{5}a_1^{+/-} -10\alpha _i^5 \mu s^{6}a_2^{+/-} \nonumber \\&-\,36\alpha _i^5 s^{7}a_3^{+/-} -40\alpha _i^5 \mu s^{5}a_1^{+/-} -60\alpha _i^5 s^{6}a_2^{+/-} +\alpha _i^4 \mu ^{3}s^{4}a_1^{+/-} -4\alpha _i^4 \mu ^{2}s^{5}a_2^{+/-} \nonumber \\&\quad +\,60\alpha _i^4 \mu s^{6}a_3^{+/-} +5\alpha _i^5 s^{5}a_1^{+/-} +41\alpha _i^4 \mu ^{2}s^{4}a_1^{+/-} +64\alpha _i^4 \mu s^{5}a_2^{+/-} +180\alpha _i^4 s^{6}a_3^{+/-} \nonumber \\&+\,2\alpha _i^3 \mu ^{3}s^{4}a_2^{+/-} -24\alpha _i^3 \mu ^{2}s^{5}a_3^{+/-} +198\alpha _i^4 \mu s^{4}a_1^{+/-} +250\alpha _i^4 s^{5}a_2^{+/-} +34\alpha _i^3 \mu ^{2}s^{4}a_2^{+/-} \nonumber \\&-\,336\alpha _i^3 \mu s^{5}a_3^{+/-} -23\alpha _i^4 s^{4}a_1^{+/-} -113\alpha _i^3 \mu ^{2}s^{3}a_1^{+/-} -148\alpha _i^3 \mu s^{4}a_2^{+/-} -780\alpha _i^3 s^{5}a_3^{+/-} \nonumber \\&\quad +\,72\alpha _i^2 \mu ^{2}s^{4}a_3^{+/-} -749\alpha _i^3 \mu s^{3}a_1^{+/-} -808\alpha _i^3 s^{4}a_2^{+/-} -126\alpha _i^2 \mu ^{2}s^{3}a_1^{+/-} -94\alpha _i^2 \mu s^{3}a_2^{+/-} \nonumber \\&\quad +\,88\alpha _i^3 s^{3}a_1^{+/-} +\alpha _i^2 \mu ^{2}s^{2}a_1^{+/-} +2 652 \alpha _i^2 s^{4}a_3^{+/-} +1881\alpha _i^2 \mu s^{2}a_1^{+/-} +1056\alpha _i^2 \mu s^{4}a_3^{+/-} \nonumber \\&+\,1720\alpha _i^2 s^{3}a_2^{+/-} -1632\alpha _i \mu s^{3}a_3^{+/-} -232\alpha _i^2 s^{2}a_1^{+/-} +1136\alpha _i \mu s^{2}a_2^{+/-} -6288\alpha _i s^{3}a_3^{+/-} \nonumber \\&\quad -\,88\alpha _i \mu sa_1^{+/-} -1376\alpha _i s^{2}a_2^{+/-} +208\alpha _i sa_1^{+/-} +7920s^{2}a_3^{+/-} -2400sa_2^{+/-} +1200a_1^{+/-} ) \nonumber \\&\quad {\ldots } \end{aligned}$$
(A.8)

Substituting all coefficients into Eq. (30), the dimensionless expression of the stress function is obtained as follows,

$$\begin{aligned} \varPhi ^{+/-}(x)= & {} a_0^{+/-} +a_1^{+/-} (x-s)+a_2^{+/-} (x-s)^{2}+a_3^{+/-} (x-s)^{3} \nonumber \\&-\,\frac{1}{24s^{3}}(\alpha _i^ 2 \mu s^{2}a_1^{+/-} +2\alpha _i^ 2 s^{3}a_2^{+/-} +2\alpha _i \mu s^{2}a_2^{+/-} -12\alpha _i s^{3}a_3^{+/-} -4\alpha _i s^{2}a_2^{+/-} \nonumber \\&\quad +\,a_1^{+/-} +\alpha _i sa_1^{+/-} +12s^{2}a_3^{+/-} -2sa_2^{+/-} )(x-s)^{4} \nonumber \\&-\,\frac{1}{120s^{4}}(2\alpha _i^ 3 \mu s^{3}a_1^{+/-} +4\alpha _i^ 3 s^{4}a_2^{+/-} +2\alpha _i^ 2 \mu s^{3}a_2^{+/-} -18\alpha _i^ 2 s^{4}a_3^{+/-} -7\alpha _i^ 2 \mu s^{2}a_1^{+/-} \nonumber \\&-\,12\alpha _i^ 2 s^{3}a_2^{+/-} +6\alpha _i \mu s^{3}a_3^{+/-} +2\alpha _i^ 2 s^{2}a_1^{+/-} -6\alpha _i \mu s^{2}a_2^{+/-} +36\alpha _i s^{3}a_3^{+/-} +10\alpha _i s^{2}a_2^{+/-} \nonumber \\&-\,2\alpha _i sa_1^{+/-} -42s^{2}a_3^{+/-} +10sa_2^{+/-} -5a_1^{+/-} )(x-s)^{5} \nonumber \\&-\,\frac{1}{720s^{5}}(3\alpha _i^ 4 \mu s^{4}a_1^{+/-} +6\alpha _i^ 4 s^{5}a_2^{+/-} -\alpha _i^ 3 \mu ^{2}s^{3}a_1^{+/-} -24\alpha _i^ 3 s^{5}a_3^{+/-} -16\alpha _i^ 3 \mu s^{3}a_1^{+/-} \nonumber \\&-\,24\alpha _i^ 3 s^{4}a_2^{+/-} -2\alpha _i^ 2 \mu ^{2}s^{3}a_2^{+/-} +18\alpha _i^ 2 \mu s^{4}a_3^{+/-} +3\alpha _i^ 3 s^{3}a_1^{+/-} -4\alpha _i^ 2 \mu s^{3}a_2^{+/-} \nonumber \\&-\,54sa_2^{+/-} +72\alpha _i^ 2 s^{4}a_3^{+/-} +40\alpha _i^ 2 \mu s^{2}a_1^{+/-} +48\alpha _i^ 2 s^{3}a_2^{+/-} -36\alpha _i \mu s^{3}a_3^{+/-} \nonumber \\&-\,7\alpha _i^ 2 s^{2}a_1^{+/-} +28\alpha _i \mu s^{2}a_2^{+/-} -162\alpha _i s^{3}a_3^{+/-} -\alpha _i \mu sa_1^{+/-} -40\alpha _i s^{2}a_2^{+/-} \nonumber \\&+\,7\alpha _i sa_1^{+/-} +198s^{2}a_3^{+/-} +27a_1^{+/-} )(x-s)^{6} \nonumber \\&-\,\frac{1}{5040s^{6}}(4\alpha _i^ 5 \mu s^{5}a_1^{+/-} +8\alpha _i^ 5 s^{6}a_2^{+/-} -3\alpha _i^ 4 \mu ^{2}s^{4}a_1^{+/-} -4\alpha _i^ 4 \mu s^{5}a_2^{+/-} +336sa_2^{+/-} \nonumber \\&-\,30\alpha _i^ 4 s^{6}a_3^{+/-} -27\alpha _i^ 4 \mu s^{4}a_1^{+/-} -40\alpha _i^ 4 s^{5}a_2^{+/-} -4\alpha _i^ 3 \mu ^{2}s^{4}a_2^{+/-} +36\alpha _i^ 3 \mu s^{5}a_3^{+/-} \nonumber \\&+\,4\alpha _i^ 4 s^{4}a_1^{+/-} +12\alpha _i^ 3 \mu ^{2}s^{3}a_1^{+/-} +16\alpha _i^ 3 \mu s^{4}a_2^{+/-} +120\alpha _i^ 3 s^{5}a_3^{+/-} -6\alpha _i^ 2 \mu ^{2}s^{4}a_3^{+/-} \nonumber \\&+\,104\alpha _i^ 3 \mu s^{3}a_1^{+/-} +124\alpha _i^ 3 s^{4}a_2^{+/-} +16\alpha _i^ 2 \mu ^{2}s^{3}a_2^{+/-} -138\alpha _i^ 2 \mu s^{4}a_3^{+/-} -14\alpha _i^ 3 s^{3}a_1^{+/-} \nonumber \\&+\,16\alpha _i^ 2 \mu s^{3}a_2^{+/-} -396\alpha _i^ 2 s^{4}a_3^{+/-} -258\alpha _i^ 2 \mu s^{2}a_1^{+/-} -260\alpha _i^ 2 s^{3}a_2^{+/-} +228\alpha \mu s^{3}a_3^{+/-} \nonumber \\&+\,36\alpha _i^ 2 s^{2}a_1^{+/-} -164\alpha _i \mu s^{2}a_2^{+/-} +924\alpha _i s^{3}a_3^{+/-} +10\alpha _i \mu sa_1^{+/-} +212\alpha _i s^{2}a_2^{+/-} \nonumber \\&-\,34\alpha _i sa_1^{+/-} -1152s^{2}a_3^{+/-} -168a_1^{+/-} )(x-s)^{7} \nonumber \\&-\,\frac{1}{40320s^{7}}(5\alpha _i^6 \mu s^{6}a_1^{+/-} +10\alpha _i^6 s^{7}a_2^{+/-} -6\alpha _i^5 \mu ^{2}s^{5}a_1^{+/-} -10\alpha _i^5 \mu s^{6}a_2^{+/-} -36\alpha _i^5 s^{7}a_3^{+/-} \nonumber \\&-\,40\alpha _i^5 \mu s^{5}a_1^{+/-} -60\alpha _i^5 s^{6}a_2^{+/-} +\alpha _i^4 \mu ^{3}s^{4}a_1^{+/-} -4\alpha _i^4 \mu ^{2}s^{5}a_2^{+/-} +60\alpha _i^4 \mu s^{6}a_3^{+/-} +5\alpha _i^5 s^{5}a_1^{+/-} \nonumber \\&+\,41\alpha _i^4 \mu ^{2}s^{4}a_1^{+/-} +64\alpha _i^4 \mu s^{5}a_2^{+/-} +180\alpha _i^4 s^{6}a_3^{+/-} +2\alpha _i^3 \mu ^{3}s^{4}a_2^{+/-} -24\alpha _i^3 \mu ^{2}s^{5}a_3^{+/-} \nonumber \\&+\,198\alpha _i^4 \mu s^{4}a_1^{+/-} +250\alpha _i^4 s^{5}a_2^{+/-} +34\alpha _i^3 \mu ^{2}s^{4}a_2^{+/-} -336\alpha _i^3 \mu s^{5}a_3^{+/-} -23\alpha _i^4 s^{4}a_1^{+/-} \nonumber \\&-\,113\alpha _i^3 \mu ^{2}s^{3}a_1^{+/-} -148\alpha _i^3 \mu s^{4}a_2^{+/-} -780\alpha _i^3 s^{5}a_3^{+/-} +72\alpha _i^2 \mu ^{2}s^{4}a_3^{+/-} -749\alpha _i^3 \mu s^{3}a_1^{+/-} \nonumber \\&-\,808\alpha _i^3 s^{4}a_2^{+/-} -126\alpha _i^2 \mu ^{2}s^{3}a_1^{+/-} -94\alpha _i^2 \mu s^{3}a_2^{+/-} +88\alpha _i^3 s^{3}a_1^{+/-} +\alpha _i^2 \mu ^{2}s^{2}a_1^{+/-} \nonumber \\&+\,2 652 \alpha _i^2 s^{4}a_3^{+/-} +1881\alpha _i^2 \mu s^{2}a_1^{+/-} +1056\alpha _i^2 \mu s^{4}a_3^{+/-} +1720\alpha _i^2 s^{3}a_2^{+/-} -1632\alpha _i \mu s^{3}a_3^{+/-} \nonumber \\&-\,232\alpha _i^2 s^{2}a_1^{+/-} +1136\alpha _i \mu s^{2}a_2^{+/-} -6288\alpha _i s^{3}a_3^{+/-} -88\alpha _i \mu sa_1^{+/-} -1376\alpha _i s^{2}a_2^{+/-} \nonumber \\&+\,208\alpha _i sa_1^{+/-} +7920s^{2}a_3^{+/-} -2400sa_2^{+/-} +1200a_1^{+/-} )(x-s)^{8}+{\ldots } \end{aligned}$$
(A.9)

in which the constants \(a_0^{+/-} \) in the stress function have been omitted since it has no effect on the final stress.

Applying Eqs. (A.8) and (30) to (29), the dimensionless radial and circumference stresses are found, respectively

$$\begin{aligned} \Sigma _{r}^{+/-}= & {} \frac{a_1^{+/-} }{x}+\frac{2(x-s)}{x}a_2^{+/-} +\frac{3(x-s)^{2}}{x}a_3^{+/-} \nonumber \\&-\,\frac{1}{6xs^{3}}(x-s)^{3}(\alpha _i^2 \mu s^{2}a_1^{+/-} +2\alpha _i^2 s^{3}a_2^{+/-} +2\alpha _i \mu s^{2}a_2^{+/-} -12\alpha _i s^{3}a_3^{+/-} -4\alpha _i s^{2}a_2^{+/-} \nonumber \\&+\,\alpha _i sa_1^{+/-} +12s^{2}a_3^{+/-} -2sa_2^{+/-} +a_1^{+/-} ) \nonumber \\&-\,\frac{1}{24xs^{4}}(x-s)^{4}(2\alpha _i^3 \mu s^{3}a_1^{+/-} +4\alpha _i^3 s^{4}a_2^{+/-} +2\alpha _i^2 \mu s^{3}a_2^{+/-} -18\alpha _i^2 s^{4}a_3^{+/-} -7\alpha _i^2 \mu s^{2}a_1^{+/-} \nonumber \\&-\,12\alpha _i^2 s^{3}a_2^{+/-} +6\alpha _i \mu s^{3}a_3^{+/-} +2\alpha _i^2 s^{2}a_1^{+/-} -6\alpha _i \mu s^{2}a_2^{+/-} +36\alpha _i s^{3}a_3^{+/-} +10\alpha _i s^{2}a_2^{+/-} \nonumber \\&-\,2\alpha _i sa_1^{+/-} -42s^{2}a_3^{+/-} +10sa_2^{+/-} -5a_1^{+/-} ) \nonumber \\&-\,\frac{1}{120xs^{5}}(x-s)^{5}(3\alpha _i^4 \mu s^{4}a_1^{+/-} +6\alpha _i^4 \mu s^{4}a_2^{+/-} -\alpha _i^3 \mu ^{2}s^{3}a_1^{+/-} -24\alpha _i^3 s^{5}a_3^{+/-} -16\alpha _i^3 \mu s^{3}a_1^{+/-} \nonumber \\&-\,24\alpha _i^3 s^{4}a_2^{+/-} -2\alpha _i^2 \mu ^{2}s^{3}a_2^{+/-} +18\alpha _i^2 \mu s^{4}a_3^{+/-} +3\alpha _i^3 s^{3}a_1^{+/-} -4\alpha _i^2 \mu s^{3}a_2^{+/-} +72\alpha _i^2 s^{4}a_3^{+/-} \nonumber \\&+\,40\alpha _i^2 \mu ^{1}s^{2}a_1^{+/-} +48\alpha _i^2 s^{3}a_2^{+/-} -36\alpha _i \mu s^{3}a_3^{+/-} -7\alpha _i^2 s^{2}a_1^{+/-} +28\alpha _i \mu s^{2}a_2^{+/-} -162\alpha _i s^{3}a_3^{+/-} \nonumber \\&-\,\alpha _i \mu sa_1^{+/-} -40\alpha _i s^{2}a_2^{+/-} +7\alpha _i sa_1^{+/-} +198s^{2}a_3^{+/-} -54sa_2^{+/-} +27a_1^{+/-} ) \nonumber \\&-\,\frac{1}{720xs^{6}}(x-s)^{6}(4\alpha _i^5 \mu s^{5}a_1^{+/-} +8\alpha _i^5 s^{6}a_2^{+/-} -3\alpha _i^4 \mu ^{2}s^{4}a_1^{+/-} -4\alpha _i^4 \mu s^{5}a_2^{+/-} -30\alpha _i^4 s^{6}a_3^{+/-} \nonumber \\&-\,27\alpha _i^4 \mu s^{4}a_1^{+/-} -40\alpha _i^4 s^{5}a_2^{+/-} -4\alpha _i^3 \mu ^{2}s^{4}a_2^{+/-} +36\alpha _i^3 \mu s^{5}a_3^{+/-} +4\alpha _i^4 s^{4}a_1^{+/-} +12\alpha _i^3 \mu ^{2}s^{3}a_1^{+/-} \nonumber \\&+\,16\alpha _i^3 \mu s^{4}a_2^{+/-} +120\alpha _i^3 s^{5}a_3^{+/-} -6\alpha _i^2 \mu ^{2}s^{4}a_3^{+/-} +104\alpha _i^3 \mu s^{3}a_1^{+/-} +124\alpha _i^3 s^{4}a_2^{+/-} +16\alpha _i^2 \mu ^{2}s^{3}a_2^{+/-} \nonumber \\&-\,138\alpha _i^2 \mu s^{4}a_3^{+/-} -14\alpha _i^3 s^{3}a_1^{+/-} +16\alpha _i^2 \mu s^{3}a_2^{+/-} -396\alpha _i^2 s^{4}a_3^{+/-} -258\alpha _i^2 \mu s^{2}a_1^{+/-} -260\alpha _i^2 s^{3}a_2^{+/-} \nonumber \\&+\,228\alpha _i \mu s^{3}a_3^{+/-} +36\alpha _i^2 s^{2}a_1^{+/-} -164\alpha _i \mu s^{2}a_2^{+/-} +924\alpha _i s^{3}a_3^{+/-} +10\alpha _i \mu sa_1^{+/-} +212\alpha _i s^{2}a_2^{+/-} \nonumber \\&-\,34\alpha _i sa_1^{+/-} -1152s^{2}a_3^{+/-} +336sa_2^{+/-} -168a_1^{+/-} ) \nonumber \\&-\,\frac{1}{5040xs^{7}}(x-s)^{7}(5\alpha _i^6 \mu s^{6}a_1^{+/-} +10\alpha _i^6 s^{7}a_2^{+/-} -6\alpha _i^5 \mu ^{2}s^{5}a_1^{+/-} -10\alpha _i^5 \mu s^{6}a_2^{+/-} -36\alpha _i^5 s^{7}a_3^{+/-} \nonumber \\&-\,40\alpha _i^5 \mu s^{5}a_1^{+/-} -60\alpha _i^5 s^{6}a_2^{+/-} +\alpha _i^4 \mu ^{3}s^{4}a_1^{+/-} -4\alpha _i^4 \mu ^{2}s^{5}a_2^{+/-} +60\alpha _i^4 \mu s^{6}a_3^+ +5\alpha _i^5 s^{5}a_1^+ \nonumber \\&+\,41\alpha _i^4 \mu ^{2}s^{4}a_1^+ +64\alpha _i^4 \mu s^{5}a_2^+ +180\alpha _i^4 s^{6}a_1^+ +2\alpha _i^3 \mu ^{3}s^{4}a_2^+ -24\alpha _i^3 \mu ^{2}s^{5}a_1^{+/-} +198\alpha _i^4 \mu s^{4}a_1^{+/-} \nonumber \\&+\,250\alpha _i^5 s^{5}a_2^{+/-} +34\alpha _i^3 \mu ^{2}s^{4}a_2^{+/-} -336\alpha _i^3 \mu s^{5}a_3^{+/-} -23\alpha _i^4 s^{4}a_i^{+/-} -113\alpha _i^3 \mu ^{2}s^{3}a_1^{+/-} \nonumber \\&-\,148\alpha _i^3 \mu s^{4}a_2^{+/-} -780\alpha _i^3 s^{5}a_3^{+/-} +72\alpha _i^2 \mu ^{2}s^{4}a_3^{+/-} -749\alpha _i^3 \mu s^{3}a_1^{+/-} -808\alpha _i^3 s^{4}a_2^{+/-} \nonumber \\&-\,126\alpha _i^2 \mu ^{2}s^{3}a_2^{+/-} +1056\alpha _i^2 \mu s^{4}a_3^{+/-} +88\alpha _i^3 s^{3}a_1^{+/-} +\alpha _i^2 \mu ^{2}s^{2}a_1^{+/-} -94\alpha _i^2 \mu s^{3}a_2^{+/-} \nonumber \\&+\,2652\alpha _i^2 s^{4}a_3^{+/-} +1881\alpha _i^2 \mu s^{2}a_1^{+/-} +1720\alpha _i^2 s^{3}a_2^{+/-} -1632\alpha _i \mu s^{3}a_3^{+/-} -232\alpha _i^2 s^{2}a_1^{+/-} \nonumber \\&+\,1136\alpha _i \mu s^{2}a_2^{+/-} -6288\alpha _i s^{3}a_3^{+/-} -88\alpha _i \mu sa_1^{+/-} -1376\alpha _i s^{2}a_2^{+/-} +208\alpha _i sa_1^{+/-} \nonumber \\&+\,7920s^{2}a_3^{+/-} -2400sa_2^{+/-} +1200a_1^{+/-} )+{\ldots } \end{aligned}$$
(A.10)

and

$$\begin{aligned} \Sigma _\theta ^+= & {} 2a_2^+ +6(x-s)a_3^+ \nonumber \\&-\,\frac{1}{2s^{3}}(x-s)^{2}(\alpha _i^2 \mu s^{2}a_1^{+/-} +2\alpha _i^2 s^{3}a_2^{+/-} +2\alpha _i \mu s^{2}a_2^{+/-} -12\alpha _i s^{3}a_3^{+/-} -4\alpha _i s^{2}a_2^{+/-} \nonumber \\&+\,\alpha _i sa_1^{+/-} +12s^{2}a_3^{+/-} -2sa_2^{+/-} +a_1^{+/-} ) \nonumber \\&-\,\frac{1}{6s^{4}}(x-s)^{3}(2\alpha _i^3 \mu s^{3}a_1^{+/-} +4\alpha _i^3 s^{4}a_2^{+/-} +2\alpha _i^2 \mu s^{3}a_2^{+/-} -18\alpha _i^2 s^{4}a_3^{+/-} -7\alpha _i^2 \mu s^{2}a_1^{+/-} \nonumber \\&-\,12\alpha _i^2 s^{3}a_2^{+/-} +6\alpha _i \mu s^{3}a_3^{+/-} +2\alpha _i^2 s^{2}a_1^{+/-} -6\alpha _i \mu s^{2}a_2^{+/-} +36\alpha _i s^{3}a_3^{+/-} +10\alpha _i s^{2}a_2^{+/-} \nonumber \\&-\,2\alpha _i sa_1^{+/-} -42s^{2}a_3^{+/-} +10sa_2^{+/-} -5a_1^{+/-} ) \nonumber \\&-\,\frac{1}{24s^{5}}(x-s)^{4}(3\alpha _i^4 \mu s^{4}a_1^{+/-} +6\alpha _i^4 \mu s^{4}a_2^{+/-} -\alpha _i^3 \mu ^{2}s^{3}a_1^{+/-} -24\alpha _i^3 s^{5}a_3^{+/-} -16\alpha _i^3 \mu s^{3}a_1^{+/-} \nonumber \\&-\,24\alpha _i^3 s^{4}a_2^{+/-} -2\alpha _i^2 \mu ^{2}s^{3}a_2^{+/-} +18\alpha _i^2 \mu s^{4}a_3^{+/-} +3\alpha _i^3 s^{3}a_1^{+/-} -4\alpha _i^2 \mu s^{3}a_2^{+/-} +72\alpha _i^2 s^{4}a_3^{+/-} \nonumber \\&+\,40\alpha _i^2 \mu ^{1}s^{2}a_1^{+/-} +48\alpha _i^2 s^{3}a_2^{+/-} -36\alpha _i \mu s^{3}a_3^{+/-} -7\alpha _i^2 s^{2}a_1^{+/-} +28\alpha _i \mu s^{2}a_2^{+/-} -162\alpha _i s^{3}a_3^{+/-} \nonumber \\&-\,\alpha _i \mu sa_1^{+/-} -40\alpha _i s^{2}a_2^{+/-} +7\alpha _i sa_1^{+/-} +198s^{2}a_3^{+/-} -54sa_2^{+/-} +27a_1^{+/-} ) \nonumber \\&-\,\frac{1}{120s^{6}}(x-s)^{5}(4\alpha _i^5 \mu s^{5}a_1^{+/-} +8\alpha _i^5 s^{6}a_2^{+/-} -3\alpha _i^4 \mu ^{2}s^{4}a_1^{+/-} -4\alpha _i^4 \mu s^{5}a_2^{+/-} -30\alpha _i^4 s^{6}a_3^{+/-} \nonumber \\&-\,27\alpha _i^4 \mu s^{4}a_1^{+/-} -40\alpha _i^4 s^{5}a_2^{+/-} -4\alpha _i^3 \mu ^{2}s^{4}a_2^{+/-} +36\alpha _i^3 \mu s^{5}a_3^{+/-} +4\alpha _i^4 s^{4}a_1^{+/-} \nonumber \\&+\,12\alpha _i^3 \mu ^{2}s^{3}a_1^{+/-} +16\alpha _i^3 \mu s^{4}a_2^{+/-} +120\alpha _i^3 s^{5}a_3^{+/-} -6\alpha _i^2 \mu ^{2}s^{4}a_3^{+/-} +104\alpha _i^3 \mu s^{3}a_1^{+/-} \nonumber \\&+\,124\alpha _i^3 s^{4}a_2^{+/-} +16\alpha _i^2 \mu ^{2}s^{3}a_2^{+/-} -138\alpha _i^2 \mu s^{4}a_3^{+/-} -14\alpha _i^3 s^{3}a_1^{+/-} +16\alpha _i^2 \mu s^{3}a_2^{+/-} \nonumber \\&-\,396\alpha _i^2 s^{4}a_3^{+/-} -258\alpha _i^2 \mu s^{2}a_1^{+/-} -260\alpha _i^2 s^{3}a_2^{+/-} +228\alpha _i \mu s^{3}a_3^{+/-} +36\alpha _i^2 s^{2}a_1^{+/-} \nonumber \\&-\,164\alpha _i \mu s^{2}a_2^{+/-} +924\alpha _i s^{3}a_3^{+/-} +10\alpha _i \mu sa_1^{+/-} +212\alpha _i s^{2}a_2^{+/-} -34\alpha _i sa_1^{+/-} \nonumber \\&-\,1152s^{2}a_3^{+/-} +336sa_2^{+/-} -168a_1^{+/-} ) \nonumber \\&-\,\frac{1}{720s^{7}}(x-s)^{6}(5\alpha _i^6 \mu s^{6}a_1^{+/-} +10\alpha _i^6 s^{7}a_2^{+/-} -6\alpha _i^5 \mu ^{2}s^{5}a_1^{+/-} -10\alpha _i^5 \mu s^{6}a_2^{+/-} -36\alpha _i^5 s^{7}a_3^{+/-} \nonumber \\&-\,40\alpha _i^5 \mu s^{5}a_1^{+/-} -60\alpha _i^5 s^{6}a_2^{+/-} +\alpha _i^4 \mu ^{3}s^{4}a_1^{+/-} -4\alpha _i^4 \mu ^{2}s^{5}a_2^{+/-} +60\alpha _i^4 \mu s^{6}a_3^+ +5\alpha _i^5 s^{5}a_1^+ \nonumber \\&+\,41\alpha _i^4 \mu ^{2}s^{4}a_1^+ +64\alpha _i^4 \mu s^{5}a_2^+ +180\alpha _i^4 s^{6}a_1^+ +2\alpha _i^3 \mu ^{3}s^{4}a_2^+ -24\alpha _i^3 \mu ^{2}s^{5}a_1^{+/-} +198\alpha _i^4 \mu s^{4}a_1^{+/-} \nonumber \\&+\,250\alpha _i^5 s^{5}a_2^{+/-} +34\alpha _i^3 \mu ^{2}s^{4}a_2^{+/-} -336\alpha _i^3 \mu s^{5}a_3^{+/-} -23\alpha _i^4 s^{4}a_i^{+/-} -113\alpha _i^3 \mu ^{2}s^{3}a_1^{+/-} \nonumber \\&-\,148\alpha _i^3 \mu s^{4}a_2^{+/-} -780\alpha _i^3 s^{5}a_3^{+/-} +72\alpha _i^2 \mu ^{2}s^{4}a_3^{+/-} -749\alpha _i^3 \mu s^{3}a_1^{+/-} -808\alpha _i^3 s^{4}a_2^{+/-} \nonumber \\&-\,126\alpha _i^2 \mu ^{2}s^{3}a_2^{+/-} +1056\alpha _i^2 \mu s^{4}a_3^{+/-} +88\alpha _i^3 s^{3}a_1^{+/-} +\alpha _i^2 \mu ^{2}s^{2}a_1^{+/-} -94\alpha _i^2 \mu s^{3}a_2^{+/-} \nonumber \\&+\,2652\alpha _i^2 s^{4}a_3^{+/-} +1881\alpha _i^2 \mu s^{2}a_1^{+/-} +1720\alpha _i^2 s^{3}a_2^{+/-} -1632\alpha _i \mu s^{3}a_3^{+/-} -232\alpha _i^2 s^{2}a_1^{+/-} \nonumber \\&+\,1136\alpha _i \mu s^{2}a_2^{+/-} -6288\alpha _i s^{3}a_3^{+/-} -88\alpha _i \mu sa_1^{+/-} -1376\alpha _i s^{2}a_2^{+/-} +208\alpha _i sa_1^{+/-} \nonumber \\&+\,7920s^{2}a_3^{+/-} -2400sa_2^{+/-} +1200a_1^{+/-} )+{\ldots }. \end{aligned}$$
(A.11)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, Xt., Li, X., Li, Wm. et al. Bending analysis of functionally graded curved beams with different properties in tension and compression. Arch Appl Mech 89, 1973–1994 (2019). https://doi.org/10.1007/s00419-019-01555-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-019-01555-8

Keywords

Navigation