Skip to main content
Log in

Frequency and Deflection Responses of Shear Deformable Skew Sandwich Curved Shell Panel: A Finite Element Approach

  • Research Article - Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The eigenfrequency and transverse deflection values of the sandwich shell panel structure including the skew angle effect are examined numerically in this article. The sandwich shell panel is modelled via the higher-order displacement polynomial functions in the framework of the equivalent single-layer theory including the thickness stretching term effect. The numerical solutions are obtained via an own finite element code (MATLAB platform) in association with the derived mathematical model. The variational technique has been adopted to solve the sandwich structural equilibrium equation and the eigenvalue parameter under the influence of mechanical loading. The solution stability including the validity of the current numerical solutions has been verified via solving the adequate number of examples as same as the available published data. Finally, the current model is extended further to explore the probable effect of one or more parameters (geometrical, material and end constraint) on the final structural performances (frequency, deflection and stresses) including the fibre skew angle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pagano, N.J.: Exact solution of rectangular bidirectional composites and sandwich plates. J. Compos. Mater. 4, 20–34 (1970)

    Article  Google Scholar 

  2. Pandya, B.N.; Kant, T.: Higher-order shear deformation theories for flexure of sandwich plates-finite element evaluations. Int. J. Solids Struct. 24, 1267–1286 (1988)

    Article  MATH  Google Scholar 

  3. Kremer, J.M.; Shabana, A.A.; Widera, G.E.: Large reference displacement analysis of composite plates part I: finite element formulation. Int. J. Numer. Methods Eng. 36, 1–16 (1993)

    Article  MATH  Google Scholar 

  4. Kremer, J.M.; Shabana, A.A.; Widera, G.E.: Large reference displacement analysis of composite plates part II: computer implementation. Int. J. Numer. Methods Eng. 36, 17–42 (1993)

    Article  MATH  Google Scholar 

  5. Wu, C.P.; Kuo, H.C.: An interlaminar stress mixed finite element method for the analysis of thick laminated composite plates. Compos. Struct. 24, 29–42 (1993)

    Article  Google Scholar 

  6. Cheung, Y.K.; Zhang, Y.X.; Wanji, C.: The application of a refined non-conforming quadrilateral plate bending element in thin plate vibration and stability analysis. Finite Elem. Anal. Des. 34, 175–191 (2000)

    Article  MATH  Google Scholar 

  7. Wang, C.M.; Ang, K.K.; Yang, L.: Free vibration of skew sandwich plates with laminated facings. J. Sound Vib. 235(2), 317–340 (2000)

    Article  Google Scholar 

  8. Ramtekkar, G.S.; Desai, Y.M.; Shah, A.H.: Mixed finite element model for thick composite laminated plates. Mech. Adv. Mater. Struct. 9, 133–156 (2002)

    Article  Google Scholar 

  9. Chakrabarti, A.; Sheikh, A.H.: Analysis of laminated sandwich plates based on interlaminar shear stress continuous plate theory. ASCE J. Eng. Mech. 4, 377–384 (2005)

    Article  Google Scholar 

  10. Chakrabarti, A.; Sheikh, A.H.: Vibration of composites and sandwich laminates subjected to in-plane partial edge load. Compos. Struct. 71, 199–209 (2005)

    Article  MATH  Google Scholar 

  11. Garg, A.K.; Khare, R.K.; Kant, T.: Higher-order closed-form solutions for free vibration of laminated composite and sandwich shells. J. Sandw. Struct. Mater. 8, 205–235 (2006)

    Article  Google Scholar 

  12. Woo, J.; Meguid, S.A.; Ong, L.S.: Nonlinear free vibration behavior of functionally graded plates. J. Sound Vib. 289(3), 595–611 (2006)

    Article  Google Scholar 

  13. Abdul-Razzak, A.A.; Haido, J.H.: Free vibration analysis of rectangular plates using higher order finite layer method. Iraq Aca. Sci. J. 15(3), 19–32 (2007)

    Google Scholar 

  14. Kapuria, S.; Kulkarni, S.D.: An improved discrete Kirchhoff element based on third order zigzag theory for static analysis of composite and sandwich plates. Int. J. Numer. Methods Eng. 69, 1948–1981 (2007)

    Article  MATH  Google Scholar 

  15. Kulkarni, S.D.; Kapuria, S.: A new discrete Kirchhoff quadrilateral element based on the third order theory for composite plates. Comput. Mech. 39, 237–246 (2007)

    Article  MATH  Google Scholar 

  16. Kant, T.; Gupta, A.B.; Pendhari, S.S.; Desai, Y.M.: Elasticity solution for cross-ply composite and sandwich laminates. Compos. Struct. 83, 13–24 (2008)

    Article  Google Scholar 

  17. Zhu, Z.H.; Meguid, S.A.: Vibration analysis of a new curved beam element. J. Sound Vib. 309(1–2), 86–95 (2008)

    Article  Google Scholar 

  18. Shabana, A.A.: On the definition of the natural frequency of oscillations in nonlinear large rotation problems. J. Sound Vib. 329(15), 3171–3181 (2010)

    Article  Google Scholar 

  19. Merdaci, S.; Tounsi, A.; Houari, M.S.A.; Mechab, I.; Hebali, H.; Benyoucef, S.: Two new refined shear displacement models for functionally graded sandwich plates. Arch. Appl. Mech. 81, 1507–1522 (2011)

    Article  MATH  Google Scholar 

  20. Rahmani, O.; Khalili, S.M.R.; Thomsen, O.T.: A high-order theory for the analysis of circular cylindrical composite sandwich shells with transversely compliant core subjected to external loads. Compos. Struct. 94, 2129–2142 (2012)

    Article  Google Scholar 

  21. Boscolo, M.: Analytical solution for free vibration analysis of composite plates with layer-wise displacement assumptions. Compos. Struct. 100, 493–510 (2013)

    Article  Google Scholar 

  22. Daouadji, T.H.; Tounsi, A.; Bedia, E.A.A.: Analytical solution for bending analysis of functionally graded plates. Sci. Iran. B. 20(3), 516–523 (2013)

    Google Scholar 

  23. Houaria, M.S.A.; Tounsi, A.; Beg, O.A.: Thermoelastic bending analysis of functionally graded sandwich plates using a new higher order shear and normal deformation theory. Int. J. Mech. Sci. 76, 102–111 (2013)

    Article  Google Scholar 

  24. Kumar, A.; Chakrabarti, A.; Bhargava, P.: Finite element analysis of laminated composite and sandwich shells using higher order zigzag theory. Compos. Struct. 106, 270–281 (2013)

    Article  Google Scholar 

  25. Mostafa, A.; Shankar, K.; Morozov, E.V.: Insight into the shear behaviour of composite sandwich panels with foam core. Mater. Des. 50, 92–101 (2013)

    Article  Google Scholar 

  26. Topal, U.; Uzman, U.: Frequency optimization of laminated composite skew sandwich plates. Indian J. Eng. Mater. S. 20, 101–107 (2013)

    Google Scholar 

  27. Tounsi, A.; Houari, M.S.A.; Benyoucef, S.; Bedia, E.A.A.: A refined trigonometric shear deformation theory for thermoelastic bending of functionally graded sandwich plates. Aerosp. Sci. Technol. 24, 209–220 (2013)

    Article  Google Scholar 

  28. Upadhyay, A.K.; Shukla, K.K.: Non-linear static and dynamic analysis of skew sandwich plates. Compos. Struct. 105, 141–148 (2013)

    Article  Google Scholar 

  29. Belabed, Z.; Houari, M.S.A.; Tounsi, A.; Mahmoud, S.R.; Beg, O.A.: An efficient and simple higher order shear and normal deformation theory for functionally graded material (FGM) plates. Compos. Part B-Eng. 60, 274–283 (2014)

    Article  Google Scholar 

  30. Chalak, H.D.; Chakrabarti, A.; Sheikh, A.H.; Iqbal, M.A.: \(\text{ C }^{0}\) FE model based on HOZT for the analysis of laminated soft core skew sandwich plates: bending and vibration. Appl. Math. Model. 38(4), 1211–1223 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  31. Liu, C.; Zhang, Y.X.: Numerical modelling of impact response of aluminium foam/FML sandwich panels. In: Recent Advances in Structural Integrity Analysis—International Congress (APCF/SIF-2014, 09–11 December 2014, Sydney), pp. 163–167 (2014)

  32. Mohammadnejad, M.; Saffari, H.; Bagheripour, M.H.: An analytical approach to vibration analysis of beams with variable properties. Arab. J. Sci. Eng. 39(4), 2561–2572 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  33. Patel, B.P.; Khan, K.; Nath, Y.: A new constitutive model for bimodular laminated structures: application to free vibrations of conical/cylindrical panels. Compos. Struct. 110, 183–191 (2014)

    Article  Google Scholar 

  34. Singh, V.K.; Panda, S.K.: Nonlinear free vibration analysis of single/doubly curved composite shallow shell panels. Thin Walled Struct. 85, 341–349 (2014)

    Article  Google Scholar 

  35. Srinivasa, C.V.; Suresh, Y.J.; Prema Kumar, W.P.: Experimental and finite element studies on free vibration of skew plates. Int. J. Adv. Struct. Eng. 6(48), 1–11 (2014)

    Google Scholar 

  36. Farhatnia, F.; Babaei, J.; Foroudastan, R.: Thermo-Mechanical nonlinear bending analysis of functionally graded thick circular plates resting on Winkler foundation based on sinusoidal shear deformation theory. Arab. J. Sci. Eng. 43, 1137–1151 (2018)

    Article  Google Scholar 

  37. Sahoo, S.S.; Panda, S.K.; Mahapatra, T.R.: Static, free vibration and transient response of laminated composite curved shallow panel—an experimental approach. Eur. J. Mech. A. Solids 59, 95–113 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  38. Mehar, K.; Panda, S.K.: Free vibration and bending behaviour of CNT reinforced composite plate using different shear deformation theory. IOP Conf. Ser. Mater. Sci. Eng. 115(1), 012014 (2016). https://doi.org/10.1088/1757-899X/115/1/012014

    Article  Google Scholar 

  39. Liew, K.M.; He, X.Q.; Tan, M.J.; Lim, H.K.: Dynamic analysis of laminated composite plates with piezoelectric sensor/actuator patches using the FSDT mesh-free method. Int. J. Mech. Sci. 46, 411–431 (2004)

    Article  MATH  Google Scholar 

  40. Baltacıoglu, A.K.; Akgoz, B.; Civalek, O.: Nonlinear static response of laminated composite plates by discrete singular convolution method. Compos. Struct. 93, 153–161 (2010)

    Article  Google Scholar 

  41. Gürses, M.; Civalek, O.; Korkmaz, A.; Ersoy, H.: Free vibration analysis of symmetric laminated skew plates by discrete singular convolution technique based on first-order shear deformation theory. Int. J. Numer. Methods Eng. 79(3), 290–313 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  42. Baltacıoglu, A.K.; Civalek, O.; Akgoz, B.; Demir, F.: Large deflection analysis of laminated composite plates resting on nonlinear elastic foundations by the method of discrete singular convolution. Int. J. Pres. Ves. Pip. 88, 290–300 (2011)

    Article  Google Scholar 

  43. Xiang, Y.; Ma, Y.F.; Kitiornchai, S.; Lim, C.W.; Lau, C.W.H.: Exact solutions for vibration of cylindrical shells with intermediate ring supports. Int. J. Mech. Sci. 44, 1907–1924 (2002)

    Article  MATH  Google Scholar 

  44. Civalek, O.: Analysis of thick rectangular plates with symmetric cross-ply laminates based on first-order shear deformation theory. J. Compos. Mater. 42(26), 2853–2867 (2008)

    Article  Google Scholar 

  45. Jin, G.; Te, Y.; Me, X.; Chen, Y.; Su, X.; Xie, X.: A unified approach for the vibration analysis of moderately thick composite laminated cylindrical shells with arbitrary boundary conditions. Int. J. Mech. Sci. 75, 357–376 (2013)

    Article  Google Scholar 

  46. Civalek, O.; Korkmaz, A.; Demir, C.: Discrete singular convolution approach for buckling analysis of rectangular Kirchhoff plates subjected to compressive loads on two-opposite edges. Adv. Eng. Softw. 41(4), 557–560 (2010)

    Article  MATH  Google Scholar 

  47. Talebitooti, M.: Three-dimensional free vibration analysis of rotating laminated conical shells: layerwise differential quadrature (LW-DQ) method. Arch. Appl. Mech. 83, 765–781 (2013)

    Article  MATH  Google Scholar 

  48. Civalek, O.: The determination of frequencies of laminated conical shells via the discrete singular convolution method. J. Mech. Mater. Struct. 1, 163–182 (2006)

    Article  Google Scholar 

  49. Civalek, O.: Free vibration of carbon nanotubes reinforced (CNTR) and functionally graded shells and plates based on FSDT via discrete singular convolution method. Compos. Part B-Eng. 111, 45–59 (2017)

    Article  Google Scholar 

  50. Bousahla, A.A.; Houari, M.S.A.; Tounsi, A.; Bedia, E.A.A.: A novel higher order shear and normal deformation theory based on neutral surface position for bending analysis of advanced composite plates. Int. J. Comput. Meth. 11(6), 1350082-1-1350082-18 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  51. Hebali, H.; Tounsi, A.; Houari, M.S.A.; Bessaim, A.; Bedia, E.A.A.: New quasi-3D hyperbolic shear deformation theory for the static and free vibration analysis of functionally graded plates. ASCE J. Eng. Mech. 140(2), 374–383 (2014)

    Article  Google Scholar 

  52. Bennoun, M.; Houari, M.S.A.; Tounsi, A.: A novel five variable refined plate theory for vibration analysis of functionally graded sandwich plates. Mech. Adv. Mater. Struct. 23(4), 423–431 (2016)

    Article  Google Scholar 

  53. Zaoui, F.Z.; Ouinas, D.; Tounsi, A.: New 2D and quasi-3D shear deformation theories for free vibration of functionally graded plates on elastic foundations. Compos. Part B-Eng. 159, 231–247 (2019)

    Article  Google Scholar 

  54. Bellifa, H.; Bakora, A.; Tounsi, A.; Bousahla, A.A.; Mahmoud, S.R.: An efficient and simple four variable refined plate theory for buckling analysis of functionally graded plates. Steel Compos. Struct. 25(3), 257–270 (2017)

    Google Scholar 

  55. Belabed, Z.; Bousahla, A.A.; Houari, M.S.A.; Tounsi, A.; Mahmoud, S.R.: A new 3-unknown hyperbolic shear deformation theory for vibration of functionally graded sandwich plate. Earthq. Struct. 14(2), 103–115 (2018)

    Google Scholar 

  56. Kaci, A.; Houari, M.S.A.; Bousahla, A.A.; Tounsi, A.; Mahmoud, S.R.: Post-buckling analysis of shear-deformable composite beams using a novel simple two-unknown beam theory. Struct. Eng. Mech. 65(5), 621–631 (2018)

    Google Scholar 

  57. Abdelaziz, H.H.; Meziane, M.A.A.; Bousahla, A.A.; Tounsi, A.; Mahmoud, S.R.; Alwabli, A.S.: An efficient hyperbolic shear deformation theory for bending, buckling and free vibration of FGM sandwich plates with various boundary conditions. Steel Compos. Struct. 25(6), 693–704 (2017)

    Google Scholar 

  58. Zine, A.; Tounsi, A.; Draiche, K.; Sekkal, M.; Mahmoud, S.R.: A novel higher-order shear deformation theory for bending and free vibration analysis of isotropic and multilayered plates and shells. Steel Compos. Struct. 26(2), 125–137 (2018)

    Google Scholar 

  59. Karami, B.; Janghorban, M.; Tounsi, A.: Variational approach for wave dispersion in anisotropic doubly-curved nanoshells based on a new nonlocal strain gradient higher order shell theory. Thin-Walled Struct. 129, 251–264 (2018)

    Article  Google Scholar 

  60. Tounsi, A.; Bousahla, A.A.; Houari, M.S.A.: A novel nonlocal refined plate theory for stability response of orthotropic single-layer graphene sheet resting on elastic medium. Smart Struct. Syst. 21(1), 15–25 (2018)

    Google Scholar 

  61. Bellifa, H.; Benrahou, K.H.; Bousahla, A.A.; Tounsi, A.; Mahmoud, S.R.: A nonlocal zeroth-order shear deformation theory for nonlinear postbuckling of nanobeams. Struct. Eng. Mech. 62(6), 695–702 (2017)

    Google Scholar 

  62. Cook, R.D.; Malkus, D.S.; Plesha, M.E.; Witt, R.J.: Concepts and applications of finite element analysis. Wiley, Singapore (2009)

    Google Scholar 

  63. Jones, R.M.: Mechanics of Composite Materials. Taylor and Francis, Philadelphia (1975)

    Google Scholar 

  64. Katariya, P.V.: Free vibration and buckling behaviour of laminated composite panel under thermal and mechanical loading. M.Tech. Thesis, NIT Rourkela (2014)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subrata K. Panda.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Katariya, P.V., Panda, S.K. Frequency and Deflection Responses of Shear Deformable Skew Sandwich Curved Shell Panel: A Finite Element Approach. Arab J Sci Eng 44, 1631–1648 (2019). https://doi.org/10.1007/s13369-018-3633-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-018-3633-0

Keywords

Navigation