Skip to main content

Advertisement

Log in

Frequency of LATE neuropathologic change across the spectrum of Alzheimer’s disease neuropathology: combined data from 13 community-based or population-based autopsy cohorts

  • Original Paper
  • Published:
Acta Neuropathologica Aims and scope Submit manuscript

Abstract

Limbic-predominant age-related TDP-43 encephalopathy neuropathologic change (LATE-NC) and Alzheimer’s disease neuropathologic change (ADNC) are each associated with substantial cognitive impairment in aging populations. However, the prevalence of LATE-NC across the full range of ADNC remains uncertain. To address this knowledge gap, neuropathologic, genetic, and clinical data were compiled from 13 high-quality community- and population-based longitudinal studies. Participants were recruited from United States (8 cohorts, including one focusing on Japanese–American men), United Kingdom (2 cohorts), Brazil, Austria, and Finland. The total number of participants included was 6196, and the average age of death was 88.1 years. Not all data were available on each individual and there were differences between the cohorts in study designs and the amount of missing data. Among those with known cognitive status before death (n = 5665), 43.0% were cognitively normal, 14.9% had MCI, and 42.4% had dementia—broadly consistent with epidemiologic data in this age group. Approximately 99% of participants (n = 6125) had available CERAD neuritic amyloid plaque score data. In this subsample, 39.4% had autopsy-confirmed LATE-NC of any stage. Among brains with “frequent” neuritic amyloid plaques, 54.9% had comorbid LATE-NC, whereas in brains with no detected neuritic amyloid plaques, 27.0% had LATE-NC. Data on LATE-NC stages were available for 3803 participants, of which 25% had LATE-NC stage > 1 (associated with cognitive impairment). In the subset of individuals with Thal Aβ phase = 0 (lacking detectable Aβ plaques), the brains with LATE-NC had relatively more severe primary age-related tauopathy (PART). A total of 3267 participants had available clinical data relevant to frontotemporal dementia (FTD), and none were given the clinical diagnosis of definite FTD nor the pathological diagnosis of frontotemporal lobar degeneration with TDP-43 inclusions (FTLD-TDP). In the 10 cohorts with detailed neurocognitive assessments proximal to death, cognition tended to be worse with LATE-NC across the full spectrum of ADNC severity. This study provided a credible estimate of the current prevalence of LATE-NC in advanced age. LATE-NC was seen in almost 40% of participants and often, but not always, coexisted with Alzheimer’s disease neuropathology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. (2017) https://www.ssa.gov/oact/STATS/table4c6.html. Accessed 14 Dec 2021

  2. (2021) Provisional life expectancy estimates for January through June, 2020 https://www.cdc.gov/nchs/data/vsrr/VSRR10-508.pdf. Accessed 14 Dec 2021

  3. Agrawal S, Yu L, Kapasi A, James BD, Arfanakis K, Barnes LL et al (2021) Limbic-predominant age-related TDP-43 encephalopathy neuropathologic change and microvascular pathologies in community-dwelling older persons. Brain Pathol. https://doi.org/10.1111/bpa.12939

    Article  PubMed  PubMed Central  Google Scholar 

  4. Alafuzoff I, Arzberger T, Al-Sarraj S, Bodi I, Bogdanovic N, Braak H et al (2008) Staging of neurofibrillary pathology in Alzheimer’s disease: a study of the BRAINNEt Europe consortium. Brain Pathol 18:484–496. https://doi.org/10.1111/j.1750-3639.2008.00147.x

    Article  PubMed  PubMed Central  Google Scholar 

  5. Alafuzoff I, Pikkarainen M, Arzberger T, Thal DR, Al-Sarraj S, Bell J et al (2008) Inter-laboratory comparison of neuropathological assessments of beta-amyloid protein: a study of the brainnet Europe consortium. Acta Neuropathol 115:533–546. https://doi.org/10.1007/s00401-008-0358-2

    Article  CAS  PubMed  Google Scholar 

  6. Alafuzoff I, Thal DR, Arzberger T, Bogdanovic N, Al-Sarraj S, Bodi I et al (2009) Assessment of beta-amyloid deposits in human brain: a study of the brainnet Europe consortium. Acta Neuropathol 117:309–320. https://doi.org/10.1007/s00401-009-0485-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Altamura C, Scrascia F, Quattrocchi CC, Errante Y, Gangemi E, Curcio G et al (2016) Regional MRI diffusion, white-matter hyperintensities, and cognitive function in Alzheimer’s disease and vascular dementia. J Clin Neurol 12:201–208. https://doi.org/10.3988/jcn.2016.12.2.201

    Article  PubMed  PubMed Central  Google Scholar 

  8. Bachstetter AD, Garrett FG, Jicha GA, Nelson PT (2021) Space-occupying brain lesions, trauma-related tau astrogliopathy, and ARTAG: a report of two cases and a literature review. Acta Neuropathol Commun 9:49. https://doi.org/10.1186/s40478-021-01152-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bellenguez C, Kucukali F, Jansen IE, Kleineidam L, Moreno-Grau S, Amin N et al (2022) New insights into the genetic etiology of Alzheimer’s disease and related dementias. Nat Genet 54:412–436. https://doi.org/10.1038/s41588-022-01024-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Bennett DA, Schneider JA, Arvanitakis Z, Wilson RS (2012) Overview and findings from the religious orders study. Curr Alzheimer Res 9:628–645. https://doi.org/10.2174/156720512801322573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Blevins BL, Vinters HV, Love S, Wilcock DM, Grinberg LT, Schneider JA et al (2020) Brain arteriolosclerosis. Acta Neuropathol. https://doi.org/10.1007/s00401-020-02235-6

    Article  PubMed  PubMed Central  Google Scholar 

  12. Boyle PA, Yu L, Leurgans SE, Wilson RS, Brookmeyer R, Schneider JA et al (2019) Attributable risk of Alzheimer’s dementia attributed to age-related neuropathologies. Ann Neurol 85:114–124. https://doi.org/10.1002/ana.25380

    Article  CAS  PubMed  Google Scholar 

  13. Braak H, Braak E (1997) Frequency of stages of Alzheimer-related lesions in different age categories. Neurobiol Aging 18:351–357

    Article  CAS  Google Scholar 

  14. Braak H, Braak E (1991) Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol 82:239–259

    Article  CAS  Google Scholar 

  15. Braak H, Thal DR, Ghebremedhin E, Del Tredici K (2011) Stages of the pathologic process in Alzheimer disease: age categories from 1 to 100 years. J Neuropathol Exp Neurol 70:960–969. https://doi.org/10.1097/NEN.0b013e318232a379

    Article  CAS  PubMed  Google Scholar 

  16. Brayne C, Richardson K, Matthews FE, Fleming J, Hunter S, Xuereb JH et al (2009) Neuropathological correlates of dementia in over-80-year-old brain donors from the population-based Cambridge city over-75s cohort (CC75C) study. J Alzheimers Dis 18:645–658. https://doi.org/10.3233/JAD-2009-1182

    Article  PubMed  Google Scholar 

  17. Brenowitz WD, Nelson PT, Besser LM, Heller KB, Kukull WA (2015) Cerebral amyloid angiopathy and its co-occurrence with Alzheimer’s disease and other cerebrovascular neuropathologic changes. Neurobiol Aging. https://doi.org/10.1016/j.neurobiolaging.2015.06.028

    Article  PubMed  PubMed Central  Google Scholar 

  18. Buciuc M, Tosakulwong N, Machulda MM, Whitwell JL, Weigand SD, Murray ME et al (2021) TAR DNA-binding protein 43 is associated with rate of memory, functional and global cognitive decline in the decade prior to death. J Alzheimers Dis 80:683–693. https://doi.org/10.3233/JAD-201166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Chornenkyy Y, Fardo DW, Nelson PT (2019) Tau and TDP-43 proteinopathies: kindred pathologic cascades and genetic pleiotropy. Lab Invest 99:993–1007. https://doi.org/10.1038/s41374-019-0196-y

    Article  PubMed  PubMed Central  Google Scholar 

  20. Corbo RM, Scacchi R (1999) Apolipoprotein E (APOE) allele distribution in the world. Is APOE*4 a “thrifty” allele? Ann Hum Genet 63:301–310. https://doi.org/10.1046/j.1469-1809.1999.6340301.x

    Article  CAS  PubMed  Google Scholar 

  21. Coyle-Gilchrist IT, Dick KM, Patterson K, Vazquez Rodriquez P, Wehmann E, Wilcox A et al (2016) Prevalence, characteristics, and survival of frontotemporal lobar degeneration syndromes. Neurology 86:1736–1743. https://doi.org/10.1212/WNL.0000000000002638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Crary JF, Trojanowski JQ, Schneider JA, Abisambra JF, Abner EL, Alafuzoff I et al (2014) Primary age-related tauopathy (PART): a common pathology associated with human aging. Acta Neuropathol 128:755–766. https://doi.org/10.1007/s00401-014-1349-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Crean S, Ward A, Mercaldi CJ, Collins JM, Cook MN, Baker NL et al (2011) Apolipoprotein E epsilon4 prevalence in Alzheimer’s disease patients varies across global populations: a systematic literature review and meta-analysis. Dement Geriatr Cogn Disord 31:20–30. https://doi.org/10.1159/000321984

    Article  CAS  PubMed  Google Scholar 

  24. Cykowski MD, Arumanayagam AS, Powell SZ, Rivera AL, Abner EL, Roman GC et al (2022) Patterns of amygdala region pathology in LATE-NC: subtypes that differ with regard to TDP-43 histopathology, genetic risk factors, and comorbid pathologies. Acta Neuropathol. https://doi.org/10.1007/s00401-022-02416-5

    Article  PubMed  PubMed Central  Google Scholar 

  25. Debatin L, Streffer J, Geissen M, Matschke J, Aguzzi A, Glatzel M (2008) Association between deposition of beta-amyloid and pathological prion protein in sporadic Creutzfeldt-Jakob disease. Neurodegener Dis 5:347–354. https://doi.org/10.1159/000121389

    Article  CAS  PubMed  Google Scholar 

  26. Dickson DW, Rademakers R, Nicholson AM, Schneider JA, Yu L, Bennett DA (2015) The TMEM106B locus and TDP-43 pathology in older persons without FTLD. Neurology 85:1354–1355. https://doi.org/10.1212/01.wnl.0000472918.79256.a9

    Article  PubMed  PubMed Central  Google Scholar 

  27. Dooneief G, Marder K, Tang MX, Stern Y (1996) The clinical dementia rating scale: community-based validation of “profound” and “terminal” stages. Neurology 46:1746–1749. https://doi.org/10.1212/wnl.46.6.1746

    Article  CAS  PubMed  Google Scholar 

  28. Dugan AJ, Nelson PT, Katsumata Y, Shade LMP, Boehme KL, Teylan MA et al (2021) Analysis of genes (TMEM106B, GRN, ABCC9, KCNMB2, and APOE) implicated in risk for LATE-NC and hippocampal sclerosis provides pathogenetic insights: a retrospective genetic association study. Acta Neuropathol Commun 9:152. https://doi.org/10.1186/s40478-021-01250-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Duyckaerts C, Braak H, Brion JP, Buee L, Del Tredici K, Goedert M et al (2015) PART is part of Alzheimer disease. Acta Neuropathol 129:749–756. https://doi.org/10.1007/s00401-015-1390-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ewbank DC (2004) The APOE gene and differences in life expectancy in Europe. J Gerontol A Biol Sci Med Sci 59:16–20. https://doi.org/10.1093/gerona/59.1.b16

    Article  PubMed  Google Scholar 

  31. Filshtein TJ, Dugger BN, Jin LW, Olichney JM, Farias ST, Carvajal-Carmona L et al (2019) Neuropathological diagnoses of demented hispanic, black, and non-hispanic white decedents seen at an Alzheimer’s disease center. J Alzheimers Dis 68:145–158. https://doi.org/10.3233/JAD-180992

    Article  PubMed  PubMed Central  Google Scholar 

  32. Flanagan ME, Cholerton B, Latimer CS, Hemmy LS, Edland SD, Montine KS et al (2018) TDP-43 neuropathologic associations in the nun study and the honolulu-asia aging study. J Alzheimers Dis 66:1549–1558. https://doi.org/10.3233/JAD-180162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Folstein MF, Folstein SE, McHugh PR (1975) “Mini-mental state” a practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res 12:189–198

    Article  CAS  Google Scholar 

  34. Greenberg SG, Davies P, Schein JD, Binder LI (1992) Hydrofluoric acid-treated tau PHF proteins display the same biochemical properties as normal tau. J Biol Chem 267:564–569

    Article  CAS  Google Scholar 

  35. Halliday GM, Del Tredici K, Braak H (2006) Critical appraisal of brain pathology staging related to presymptomatic and symptomatic cases of sporadic Parkinson’s disease. J Neural Transm Suppl. https://doi.org/10.1007/978-3-211-45295-0_16

    Article  PubMed  Google Scholar 

  36. Harrison WT, Lusk JB, Liu B, Ervin JF, Johnson KG, Green CL et al (2021) Limbic-predominant age-related TDP-43 encephalopathy neuropathological change (LATE-NC) is independently associated with dementia and strongly associated with arteriolosclerosis in the oldest-old. Acta Neuropathol. https://doi.org/10.1007/s00401-021-02360-w

    Article  PubMed  Google Scholar 

  37. Hokkanen SRK, Hunter S, Polvikoski TM, Keage HAD, Minett T, Matthews FE et al (2018) Hippocampal sclerosis, hippocampal neuron loss patterns and TDP-43 in the aged population. Brain Pathol 28:548–559. https://doi.org/10.1111/bpa.12556

    Article  CAS  PubMed  Google Scholar 

  38. Hokkanen SRK, Kero M, Kaivola K, Hunter S, Keage HAD, Kiviharju A et al (2020) Putative risk alleles for LATE-NC with hippocampal sclerosis in population-representative autopsy cohorts. Brain Pathol 30:364–372. https://doi.org/10.1111/bpa.12773

    Article  CAS  PubMed  Google Scholar 

  39. Hunter S, Hokkanen SRK, Keage HAD, Fleming J, Minett T, Polvikoski T et al (2020) TDP-43 related neuropathologies and phosphorylation state: associations with age and clinical dementia in the Cambridge city over-75s cohort. J Alzheimers Dis: https://doi.org/10.3233/JAD-191093

    Article  Google Scholar 

  40. James BD, Wilson RS, Boyle PA, Trojanowski JQ, Bennett DA, Schneider JA (2016) TDP-43 stage, mixed pathologies, and clinical Alzheimer’s-type dementia. Brain 139:2983–2993. https://doi.org/10.1093/brain/aww224

    Article  PubMed  PubMed Central  Google Scholar 

  41. Jellinger KA (2022) Recent update on the heterogeneity of the Alzheimer’s disease spectrum. J Neural Transm (Vienna) 129:1–24. https://doi.org/10.1007/s00702-021-02449-2

    Article  CAS  Google Scholar 

  42. Jicha GA, Abner EL, Schmitt FA, Kryscio RJ, Riley KP, Cooper GE et al (2012) Preclinical AD workgroup staging: pathological correlates and potential challenges. Neurobiol Aging 33(622):e621-622. https://doi.org/10.1016/j.neurobiolaging.2011.02.018

    Article  Google Scholar 

  43. Josephs KA, Mackenzie I, Frosch MP, Bigio EH, Neumann M, Arai T et al (2019) LATE to the PART-y. Brain 142:e47. https://doi.org/10.1093/brain/awz224

    Article  PubMed  PubMed Central  Google Scholar 

  44. Josephs KA, Murray ME, Tosakulwong N, Weigand SD, Serie AM, Perkerson RB et al (2019) Pathological, imaging and genetic characteristics support the existence of distinct TDP-43 types in non-FTLD brains. Acta Neuropathol 137:227–238. https://doi.org/10.1007/s00401-018-1951-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Josephs KA, Murray ME, Whitwell JL, Tosakulwong N, Weigand SD, Petrucelli L (2016) Updated TDP-43 in Alzheimer,s disease staging scheme. Acta Neuropathol 131:571–585. https://doi.org/10.1007/s00401-016-1537-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Josephs KA, Whitwell JL, Knopman DS, Hu WT, Stroh DA, Baker M et al (2008) Abnormal TDP-43 immunoreactivity in AD modifies clinicopathologic and radiologic phenotype. Neurology 70:1850–1857

    Article  CAS  Google Scholar 

  47. Josephs KA, Whitwell JL, Weigand SD, Murray ME, Tosakulwong N, Liesinger AM et al (2014) TDP-43 is a key player in the clinical features associated with Alzheimer’s disease. Acta Neuropathol 127:811–824. https://doi.org/10.1007/s00401-014-1269-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Karanth S, Nelson PT, Katsumata Y, Kryscio RJ, Schmitt FA, Fardo DW et al (2020) Prevalence and clinical phenotype of quadruple misfolded proteins in older adults. JAMA Neurol 77:1299–1307. https://doi.org/10.1001/jamaneurol.2020.1741

    Article  PubMed  PubMed Central  Google Scholar 

  49. Katsumata Y, Abner EL, Karanth S, Teylan MA, Mock CN, Cykowski MD et al (2020) Distinct clinicopathologic clusters of persons with TDP-43 proteinopathy. Acta Neuropathol 140:659–674. https://doi.org/10.1007/s00401-020-02211-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kawas CH, Kim RC, Sonnen JA, Bullain SS, Trieu T, Corrada MM (2015) Multiple pathologies are common and related to dementia in the oldest-old: the 90+ study. Neurology 85:535–542. https://doi.org/10.1212/WNL.0000000000001831

    Article  PubMed  PubMed Central  Google Scholar 

  51. Keage HA, Hunter S, Matthews FE, Ince PG, Hodges J, Hokkanen SR (2014) TDP-43 pathology in the population: prevalence and associations with dementia and age. J Alzheimers Dis 42:641–650. https://doi.org/10.3233/JAD-132351

    Article  CAS  PubMed  Google Scholar 

  52. Kero M, Raunio A, Polvikoski T, Tienari PJ, Paetau A, Myllykangas L (2018) Hippocampal sclerosis in the oldest old: a finnish population-based study. J Alzheimers Dis 63:263–272. https://doi.org/10.3233/JAD-171068

    Article  PubMed  PubMed Central  Google Scholar 

  53. Knopman DS, Roberts RO (2011) Estimating the number of persons with frontotemporal lobar degeneration in the US population. J Mol Neurosci 45:330–335. https://doi.org/10.1007/s12031-011-9538-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Kon T, Tomiyama M, Wakabayashi K (2020) Neuropathology of lewy body disease: clinicopathological crosstalk between typical and atypical cases. Neuropathology 40:30–39. https://doi.org/10.1111/neup.12597

    Article  CAS  PubMed  Google Scholar 

  55. Kovacs GG, Milenkovic I, Wohrer A, Hoftberger R, Gelpi E, Haberler C et al (2013) Non-alzheimer neurodegenerative pathologies and their combinations are more frequent than commonly believed in the elderly brain: a community-based autopsy series. Acta Neuropathol 126:365–384. https://doi.org/10.1007/s00401-013-1157-y

    Article  CAS  PubMed  Google Scholar 

  56. Latimer CS, Burke BT, Liachko NF, Currey HN, Kilgore MD, Gibbons LE et al (2019) Resistance and resilience to Alzheimer’s disease pathology are associated with reduced cortical pTau and absence of limbic-predominant age-related TDP-43 encephalopathy in a community-based cohort. Acta Neuropathol Commun 7:91. https://doi.org/10.1186/s40478-019-0743-1

    Article  CAS  PubMed  Google Scholar 

  57. Latimer CS, Keene CD, Flanagan ME, Hemmy LS, Lim KO, White LR et al (2017) Resistance to Alzheimer disease neuropathologic changes and apparent cognitive resilience in the nun and honolulu-asia aging studies. J Neuropathol Exp Neurol 76:458–466. https://doi.org/10.1093/jnen/nlx030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Lee CS, Latimer CS, Henriksen JC, Blazes M, Larson EB, Crane PK et al (2021) Application of deep learning to understand resilience to Alzheimer’s disease pathology. Brain Pathol 31:e12974. https://doi.org/10.1111/bpa.12974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Lopez OL, Kofler J, Chang Y, Berman SB, Becker JT, Sweet RA et al (2020) Hippocampal sclerosis, TDP-43, and the duration of the symptoms of dementia of AD patients. Ann Clin Transl Neurol 7:1546–1556. https://doi.org/10.1002/acn3.51135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Matthews FE, Arthur A, Barnes LE, Bond J, Jagger C, Robinson L et al (2013) A two-decade comparison of prevalence of dementia in individuals aged 65 years and older from three geographical areas of England: results of the cognitive function and ageing study I and II. Lancet 382:1405–1412. https://doi.org/10.1016/S0140-6736(13)61570-6

    Article  PubMed  PubMed Central  Google Scholar 

  61. McAleese KE, Walker L, Erskine D, Thomas AJ, McKeith IG, Attems J (2017) TDP-43 pathology in Alzheimer’s disease, dementia with lewy bodies and ageing. Brain Pathol 27:472–479. https://doi.org/10.1111/bpa.12424

    Article  CAS  PubMed  Google Scholar 

  62. Mehta RI, Schneider JA (2021) What is Alzheimer’s disease? The neuropathological heterogeneity of clinically defined Alzheimer’s dementia. Curr Opin Neurol 34:237–245. https://doi.org/10.1097/WCO.0000000000000912

    Article  CAS  PubMed  Google Scholar 

  63. Meneses A, Koga S, O’Leary J, Dickson DW, Bu G, Zhao N (2021) TDP-43 pathology in Alzheimer’s disease. Mol Neurodegener 16:84. https://doi.org/10.1186/s13024-021-00503-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Miklossy J, Steele JC, Yu S, McCall S, Sandberg G, McGeer EG et al (2008) Enduring involvement of tau, beta-amyloid, alpha-synuclein, ubiquitin and TDP-43 pathology in the amyotrophic lateral sclerosis/parkinsonism-dementia complex of guam (ALS/PDC). Acta Neuropathol 116:625–637. https://doi.org/10.1007/s00401-008-0439-2

    Article  CAS  PubMed  Google Scholar 

  65. Mimuro M, Yoshida M (2020) Chameleons and mimics: Progressive supranuclear palsy and corticobasal degeneration. Neuropathology 40:57–67. https://doi.org/10.1111/neup.12590

    Article  CAS  PubMed  Google Scholar 

  66. Mirra SS, Heyman A, McKeel D, Sumi SM, Crain BJ, Brownlee LM et al (1991) The consortium to establish a registry for Alzheimer’s Disease (CERAD) part II standardization of the neuropathologic assessment of Alzheimer’s disease. Neurology 41:479–486

    Article  CAS  Google Scholar 

  67. Mock C, Teylan M, Beecham G, Besser L, Cairns NJ, Crary JF et al (2020) The utility of the national Alzheimer’s coordinating Center’s database for the rapid assessment of evolving neuropathologic conditions. Alzheimer Dis Assoc Disord 34:105–111. https://doi.org/10.1097/WAD.0000000000000380

    Article  PubMed  PubMed Central  Google Scholar 

  68. Montine TJ, Monsell SE, Beach TG, Bigio EH, Bu Y, Cairns NJ et al (2016) Multisite assessment of NIA-AA guidelines for the neuropathologic evaluation of Alzheimer’s disease. Alzheimers Dement 12:164–169. https://doi.org/10.1016/j.jalz.2015.07.492

    Article  PubMed  Google Scholar 

  69. Montine TJ, Phelps CH, Beach TG, Bigio EH, Cairns NJ, Dickson DW et al (2012) National institute on aging-Alzheimer’s association guidelines for the neuropathologic assessment of Alzheimer’s disease: a practical approach. Acta Neuropathol 123:1–11. https://doi.org/10.1007/s00401-011-0910-3

    Article  CAS  PubMed  Google Scholar 

  70. Murray ME, Cannon A, Graff-Radford NR, Liesinger AM, Rutherford NJ, Ross OA et al (2014) Differential clinicopathologic and genetic features of late-onset amnestic dementias. Acta Neuropathol 128:411–421. https://doi.org/10.1007/s00401-014-1302-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Murray ME, Graff-Radford NR, Ross OA, Petersen RC, Duara R, Dickson DW (2011) Neuropathologically defined subtypes of Alzheimer’s disease with distinct clinical characteristics: a retrospective study. Lancet Neurol 10:785–796

    Article  Google Scholar 

  72. Nag S, Barnes LL, Yu L, Wilson RS, Bennett DA, Schneider JA (2020) Limbic-predominant age-related TDP-43 encephalopathy in black and white decedents. Neurology 95:e2056–e2064. https://doi.org/10.1212/WNL.0000000000010602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Nag S, Yu L, Boyle PA, Leurgans SE, Bennett DA, Schneider JA (2018) TDP-43 pathology in anterior temporal pole cortex in aging and Alzheimer’s disease. Acta Neuropathol Commun 6:33. https://doi.org/10.1186/s40478-018-0531-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Nag S, Yu L, Capuano AW, Wilson RS, Leurgans SE, Bennett DA et al (2015) Hippocampal sclerosis and TDP-43 pathology in aging and Alzheimer disease. Ann Neurol 77:942–952. https://doi.org/10.1002/ana.24388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Nag S, Yu L, Wilson RS, Chen EY, Bennett DA, Schneider JA (2017) TDP-43 pathology and memory impairment in elders without pathologic diagnoses of AD or FTLD. Neurology 88:653–660. https://doi.org/10.1212/WNL.0000000000003610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Nascimento C, Di Lorenzo Alho AT, Bazan Conceicao Amaral C, Leite REP, Nitrini R, Jacob-Filho W et al (2018) Prevalence of transactive response DNA-binding protein 43 (TDP-43) proteinopathy in cognitively normal older adults: systematic review and meta-analysis. Neuropathol Appl Neurobiol 44:286–297. https://doi.org/10.1111/nan.12430

    Article  CAS  PubMed  Google Scholar 

  77. Nascimento C, Suemoto CK, Rodriguez RD, Alho AT, Leite RP, Farfel JM (2016) Higher prevalence of TDP-43 proteinopathy in cognitively normal asians: a clinicopathological study on a multiethnic sample. Brain Pathol 26:177–185. https://doi.org/10.1111/bpa.12296

    Article  CAS  PubMed  Google Scholar 

  78. Nelson PT (2021) LATE neuropathologic changes with little or no Alzheimer disease is common and is associated with cognitive impairment but not frontotemporal dementia. J Neuropathol Exp Neurol. https://doi.org/10.1093/jnen/nlab050

    Article  PubMed  PubMed Central  Google Scholar 

  79. Nelson PT, Abner EL, Schmitt FA, Kryscio RJ, Jicha GA, Smith CD et al (2010) Modeling the association between 43 different clinical and pathological variables and the severity of cognitive impairment in a large autopsy cohort of elderly persons. Brain Pathol 20:66–79. https://doi.org/10.1111/j.1750-3639.2008.00244.x

    Article  PubMed  Google Scholar 

  80. Nelson PT, Alafuzoff I, Bigio EH, Bouras C, Braak H, Cairns NJ et al (2012) Correlation of Alzheimer disease neuropathologic changes with cognitive status: a review of the literature. J Neuropathol Exp Neurol 71:362–381. https://doi.org/10.1097/NEN.0b013e31825018f7

    Article  PubMed  Google Scholar 

  81. Nelson PT, Dickson DW, Trojanowski JQ, Jack CR, Boyle PA, Arfanakis K et al (2019) Limbic-predominant age-related TDP-43 encephalopathy (LATE): consensus working group report. Brain. https://doi.org/10.1093/brain/awz099

    Article  PubMed  PubMed Central  Google Scholar 

  82. Nelson PT, Dickson DW, Trojanowski JQ, Jack CR, Boyle PA, Arfanakis K et al (2019) Reply: LATE to the PART-y. Brain 142:e48. https://doi.org/10.1093/brain/awz226

    Article  PubMed  PubMed Central  Google Scholar 

  83. Nelson PT, Gal Z, Wang WX, Niedowicz DM, Artiushin SC, Wycoff S et al (2019) TDP-43 proteinopathy in aging: associations with risk-associated gene variants and with brain parenchymal thyroid hormone levels. Neurobiol Dis 125:67–76. https://doi.org/10.1016/j.nbd.2019.01.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Neumann M, Sampathu DM, Kwong LK, Truax AC, Micsenyi MC, Chou TT et al (2006) Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science 314:130–133

    Article  CAS  Google Scholar 

  85. Nguyen ML, Huie EZ, Whitmer RA, George KM, Dugger BN (2022) Neuropathology studies of dementia in US persons other than non-hispanic whites. Free Neuropathol. https://doi.org/10.17879/freeneuropathology-2022-3795

    Article  PubMed  PubMed Central  Google Scholar 

  86. Plassman BL, Langa KM, Fisher GG, Heeringa SG, Weir DR, Ofstedal MB et al (2007) Prevalence of dementia in the United States: the aging, demographics, and memory study. Neuroepidemiology 29:125–132. https://doi.org/10.1159/000109998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Rademakers R, Eriksen JL, Baker M, Robinson T, Ahmed Z, Lincoln SJ et al (2008) Common variation in the miR-659 binding-site of GRN is a major risk factor for TDP43-positive frontotemporal dementia. Hum Mol Genet 17:3631–3642. https://doi.org/10.1093/hmg/ddn257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Rahimi J, Kovacs GG (2014) Prevalence of mixed pathologies in the aging brain. Alzheimers Res Ther 6:82. https://doi.org/10.1186/s13195-014-0082-1

    Article  PubMed  PubMed Central  Google Scholar 

  89. Rascovsky K, Hodges JR, Kipps CM, Johnson JK, Seeley WW, Mendez MF et al (2007) Diagnostic criteria for the behavioral variant of frontotemporal dementia (bvFTD): current limitations and future directions. Alzheimer Dis Assoc Disord 21:S14-18. https://doi.org/10.1097/WAD.0b013e31815c3445

    Article  PubMed  Google Scholar 

  90. Ribeiro FS, de Oliveira Duarte YA, Santos JLF, Leist AK (2021) Changes in prevalence of cognitive impairment and associated risk factors 2000–2015 in Sao Paulo. Brazil BMC Geriatr 21:609. https://doi.org/10.1186/s12877-021-02542-x

    Article  PubMed  Google Scholar 

  91. Roberts RO, Geda YE, Knopman DS, Cha RH, Pankratz VS, Boeve BF et al (2008) The Mayo Clinic Study of Aging: design and sampling, participation, baseline measures and sample characteristics. Neuroepidemiology 30:58–69. https://doi.org/10.1159/000115751

    Article  PubMed  PubMed Central  Google Scholar 

  92. Robinson JL, Corrada MM, Kovacs GG, Dominique M, Caswell C, Xie SX et al (2018) Non-Alzheimer’s contributions to dementia and cognitive resilience in the 90+ Study. Acta Neuropathol. https://doi.org/10.1007/s00401-018-1872-5

    Article  PubMed  PubMed Central  Google Scholar 

  93. Robinson JL, Lee EB, Xie SX, Rennert L, Suh E, Bredenberg C et al (2018) Neurodegenerative disease concomitant proteinopathies are prevalent, age-related and APOE4-associated. Brain 141:2181–2193. https://doi.org/10.1093/brain/awy146

    Article  PubMed  PubMed Central  Google Scholar 

  94. Robinson JL, Porta S, Garrett FG, Zhang P, Xie SX, Suh E et al (2020) Limbic-predominant age-related TDP-43 encephalopathy differs from frontotemporal lobar degeneration. Brain 143:2844–2857. https://doi.org/10.1093/brain/awaa219

    Article  PubMed  PubMed Central  Google Scholar 

  95. Robinson JL, Richardson H, Xie SX, Suh E, Van Deerlin VM, Alfaro B et al (2021) The development and convergence of co-pathologies in Alzheimer’s disease. Brain 144:953–962. https://doi.org/10.1093/brain/awaa438

    Article  PubMed  PubMed Central  Google Scholar 

  96. Rutherford NJ, Carrasquillo MM, Li M, Bisceglio G, Menke J, Josephs KA et al (2012) TMEM106B risk variant is implicated in the pathologic presentation of Alzheimer disease. Neurology 79:717–718. https://doi.org/10.1212/WNL.0b013e318264e3ac

    Article  PubMed  PubMed Central  Google Scholar 

  97. Sabbagh MN, Sandhu SS, Farlow MR, Vedders L, Shill HA, Caviness JN et al (2009) Correlation of clinical features with argyrophilic grains at autopsy. Alzheimer Dis Assoc Disord 23:229–233

    Article  Google Scholar 

  98. Schmitt FA, Nelson PT, Abner E, Scheff S, Jicha GA, Smith C et al (2012) University of kentucky sanders-brown healthy brain aging volunteers: donor characteristics, procedures, and neuropathology. Curr Alzheimer Res 9:724–733

    Article  CAS  Google Scholar 

  99. Schneider JA, Aggarwal NT, Barnes L, Boyle P, Bennett DA (2009) The Neuropathology of older persons with and without dementia from community versus clinic cohorts. J Alzheimers Dis. https://doi.org/10.3233/JAD-2009-1227

    Article  PubMed  PubMed Central  Google Scholar 

  100. Schneider JA, Watts RL, Gearing M, Brewer RP, Mirra SS (1997) Corticobasal degeneration: neuropathologic and clinical heterogeneity. Neurology 48:959–969. https://doi.org/10.1212/wnl.48.4.959

    Article  CAS  PubMed  Google Scholar 

  101. Singh PP, Singh M, Mastana SS (2006) APOE distribution in world populations with new data from India and the UK. Ann Hum Biol 33:279–308. https://doi.org/10.1080/03014460600594513

    Article  CAS  PubMed  Google Scholar 

  102. Smith CD, Johnson ES, Van Eldik LJ, Jicha GA, Schmitt FA, Nelson PT et al (2016) Peripheral (deep) but not periventricular MRI white matter hyperintensities are increased in clinical vascular dementia compared to Alzheimer’s disease. Brain Behav. https://doi.org/10.1002/brb3.438

    Article  PubMed  PubMed Central  Google Scholar 

  103. Smith VD, Bachstetter AD, Ighodaro E, Roberts K, Abner EL, Fardo DW et al (2017) Overlapping but distinct TDP-43 and tau pathologic patterns in aged hippocampi. Brain Pathol 28:264–273. https://doi.org/10.1111/bpa.12505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Strong MJ, Abrahams S, Goldstein LH, Woolley S, McLaughlin P, Snowden J et al (2017) Amyotrophic lateral sclerosis—frontotemporal spectrum disorder (ALS-FTSD): revised diagnostic criteria. Amyotroph Lateral Scler Frontotemporal Degener 18:153–174. https://doi.org/10.1080/21678421.2016.1267768

    Article  PubMed  PubMed Central  Google Scholar 

  105. Suemoto CK, Ferretti-Rebustini RE, Rodriguez RD, Leite RE, Soterio L, Brucki SM et al (2017) Neuropathological diagnoses and clinical correlates in older adults in Brazil: a cross-sectional study. PLoS Med 14:e1002267. https://doi.org/10.1371/journal.pmed.1002267

    Article  PubMed  PubMed Central  Google Scholar 

  106. Suemoto CK, Leite REP, Ferretti-Rebustini REL, Rodriguez RD, Nitrini R, Pasqualucci CA et al (2019) Neuropathological lesions in the very old: results from a large Brazilian autopsy study. Brain Pathol 29:771–781. https://doi.org/10.1111/bpa.12719

    Article  PubMed  PubMed Central  Google Scholar 

  107. Teng EL, Hasegawa K, Homma A, Imai Y, Larson E, Graves A et al (1994) The cognitive abilities screening instrument (CASI): a practical test for cross-cultural epidemiological studies of dementia. Int Psychogeriatr 6:45–58. https://doi.org/10.1017/s1041610294001602 (Discussion 62)

    Article  CAS  PubMed  Google Scholar 

  108. Thal DR, Capetillo-Zarate E, Del Tredici K, Braak H (2006) The development of amyloid beta protein deposits in the aged brain. Sci Aging Knowl Environ. https://doi.org/10.1126/sageke.2006.6.re1

    Article  Google Scholar 

  109. Thal DR, Griffin WS, Braak H (2008) Parenchymal and vascular abeta-deposition and its effects on the degeneration of neurons and cognition in Alzheimer’s disease. J Cell Mol Med 12:1848–1862. https://doi.org/10.1111/j.1582-4934.2008.00411.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Thomas DX, Bajaj S, McRae-McKee K, Hadjichrysanthou C, Anderson RM, Collinge J (2020) Association of TDP-43 proteinopathy, cerebral amyloid angiopathy, and lewy bodies with cognitive impairment in individuals with or without Alzheimer’s disease neuropathology. Sci Rep 10:14579. https://doi.org/10.1038/s41598-020-71305-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Tome SO, Vandenberghe R, Ospitalieri S, Van Schoor E, Tousseyn T, Otto M et al (2020) Distinct molecular patterns of TDP-43 pathology in Alzheimer’s disease: relationship with clinical phenotypes. Acta Neuropathol Commun 8:61. https://doi.org/10.1186/s40478-020-00934-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Tyas SL, Salazar JC, Snowdon DA, Desrosiers MF, Riley KP, Mendiondo MS et al (2007) Transitions to mild cognitive impairments, dementia, and death: findings from the nun study. Am J Epidemiol 165:1231–1238. https://doi.org/10.1093/aje/kwm085

    Article  PubMed  Google Scholar 

  113. Wegiel J, Flory M, Kuchna I, Nowicki K, Wegiel J, Ma SY et al (2022) Developmental deficits and staging of dynamics of age associated Alzheimer’s disease neurodegeneration and neuronal loss in subjects with down syndrome. Acta Neuropathol Commun 10:2. https://doi.org/10.1186/s40478-021-01300-9

    Article  PubMed  PubMed Central  Google Scholar 

  114. Wennberg AM, Tosakulwong N, Lesnick TG, Murray ME, Whitwell JL, Liesinger AM et al (2018) Association of apolipoprotein e epsilon4 with transactive response DNA-binding protein 43. JAMA Neurol 75:1347–1354. https://doi.org/10.1001/jamaneurol.2018.3139

    Article  PubMed  PubMed Central  Google Scholar 

  115. Wharton SB, Brayne C, Savva GM, Matthews FE, Forster G, Simpson J et al (2011) Epidemiological neuropathology: the MRC cognitive function and aging study experience. J Alzheimers Dis 25:359–372. https://doi.org/10.3233/JAD-2011-091402

    Article  PubMed  Google Scholar 

  116. White L, Small BJ, Petrovitch H, Ross GW, Masaki K, Abbott RD et al (2005) Recent clinical-pathologic research on the causes of dementia in late life: update from the honolulu-asia aging study. J Geriatr Psychiatry Neurol 18:224–227. https://doi.org/10.1177/0891988705281872

    Article  PubMed  Google Scholar 

  117. Wilson AC, Dugger BN, Dickson DW, Wang DS (2011) TDP-43 in aging and Alzheimer’s disease—a review. Int J Clin Exp Pathol 4:147–155

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Yang HS, Yu L, White CC, Chibnik LB, Chhatwal JP, Sperling RA et al (2018) Evaluation of TDP-43 proteinopathy and hippocampal sclerosis in relation to APOE epsilon4 haplotype status: a community-based cohort study. Lancet Neurol. https://doi.org/10.1016/S1474-4422(18)30251-5

    Article  PubMed  PubMed Central  Google Scholar 

  119. Yu L, Schneider JA, Kapasi A, Bennett DA, Boyle PA (2020) Limbic-predominant age-related TDP-43 encephalopathy and distinct longitudinal profiles of domain-specific literacy. Alzheimer Dis Assoc Disord 34:299–305. https://doi.org/10.1097/WAD.0000000000000389

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are profoundly grateful to the research participants, caregivers, clinicians, staff, and colleague scientists who contributed to this study.

Funding

We acknowledge National Institutes of Health grants P30 AG072958 (S.-H. J.W.), P30 AG072977 (M.E.F.), K08 AG065463 (M.E.F.), RF1 AG072080 (M.E.F.), K08 AG 065426 (C.S.L), R01 AG038651 (E.L.A.), UF1 AG057707 (T.J.M and L.W), R01AG021055 (CK and MC), P30 AG066519 (UCI ADRC), R01 AG061111 (P.T.N.), R01 AG057187 (P.T.N.), P30 AG072946 (P.T.N.), RF1 NS118584 (M.D.C.), R01 AG054449 (M.E.M.), RF1 AG069052 (J.G.R), P30 AG072972 (UC Davis ADRC), R01 AG062517 (B.N.D.), U19 AG069701 (M.E.M.), K24 AG053435 (L.T.G.), R01AG067482 (J.A.S.), R01AG064233 (J.A.S.), R01AG022018 (J.A.S.), P30AG010161/P30AG072975 (J.A.S.), P30 AG062677 (Mayo ADRC), UF1 NS125417 (R.C.P.), U01 AG006786 (MCSA), R01 AG034676 (REP), P30 AG66509 (UW ADRC), and U19 AG066567 (ACT Study). Academy of Finland (341007) (L.M.); State funding for university-level health research (TYH2020231, TYH2022316) (L.M.); Liv och Hälsa Foundation (L.M.); Rossy Foundation and the Edmond Safra Philanthropic Foundation (G.G.K.); Sao Paulo Research Foundation (FAPESP 06/55318-1, 09/09134-4, 16/24326-0) (C.K.S.); the Nancy and Buster Alvord Endowment (C.D.K.); Alzheimer’s Research UK (ARUK) doctoral studentship (ARUK-PhD2017-34) (R.M.); ARUK-PhD2014-19 (S.R.K.H.). UK Medical Research Council (MRC) (MRC/G9901400, U.1052.00.0013, G0900582). NHMRC Dementia Research Leadership Fellowship NT113567 (H.A.D.K.), Addenbrooke’s Charitable Trust (H.A.D.K., S.H.), Addenbrooke’s Charitable Trust grant 900108 (S.H.), Paul G. Allen Foundation (S.H.), ARUK NSG (S.H.), Alzheimer’s Society 554 (AS-PG-2019b-024) (S.H., J.F.). The Cambridge Brain Bank Laboratory is supported by the National Institute for Health Research, Cambridge Biomedical Research Centre. APOE genotyping from the National Centralized Repository for Alzheimer’s Disease and Related Dementias (NCRAD), which receives government support under a cooperative agreement grant (U24AG021886) awarded by the National Institute on Aging (NIA), were used in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter T. Nelson.

Ethics declarations

Conflict of interest

Authors D.W.D., G.G.K., and P.T.N. are members of the Editorial Board of Acta Neuropathologica and J.A. is Editor in Chief of Acta Neuropathologica, but none of the coauthors were involved in the Editorial handling of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 Information on included cohorts (DOCX 70 KB)

Supplementary file2 Data that were requested from each cohort–blank data templates (XLSX 12 KB)

Supplementary file3 Numbers of participants included on each figure and table from each cohort (XLSX 10 KB)

401_2022_2444_MOESM4_ESM.xlsx

Supplementary file4 Digital neuropathology to assess inter-rater reliability of Braak NFT stage diagnoses in a sample of LATE-NC+/ADNC- cases with cognitive impairment (XLSX 12 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nelson, P.T., Brayne, C., Flanagan, M.E. et al. Frequency of LATE neuropathologic change across the spectrum of Alzheimer’s disease neuropathology: combined data from 13 community-based or population-based autopsy cohorts. Acta Neuropathol 144, 27–44 (2022). https://doi.org/10.1007/s00401-022-02444-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00401-022-02444-1

Keywords

Navigation