Skip to main content
Log in

A high-frequency piezoelectric rheometer with validation of the loss angle measuring loop: application to polymer melts and colloidal glasses

  • Original Contribution
  • Published:
Rheologica Acta Aims and scope Submit manuscript

Abstract

We revisit and improve the technique of piezo-operated sliding-plate rheometry in order to provide a versatile platform for measuring the linear viscoelastic properties of various soft matter systems at frequencies from 10 to 1.000 Hz. The sensitive loss angle measuring loop is validated explicitly against reference data from entangled amorphous polymer melts obtained with conventional rotational rheometers by means of time-temperature superposition (tTS). Frequency range limiting factors such as sample and tool inertia are discussed while errors are traced and theoretical correction is shown to be feasible when strong nonlinear behavior of the measuring cell is present. This gives confidence in measuring more complex systems where tTS does not apply. We also demonstrate the ability to probe the short-time dynamics of hard-sphere colloidal glasses. Important high-frequency features such as the behavior of the elastic modulus, G′, the moduli crossover frequency fc related to β-relaxation, and the associated limiting in-phase (with strain-rate), dynamic viscosity η′, are captured. This validates the suitability of this high-frequency rheometric technique to provide insights into interactions at nanometric particle separations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14.

Similar content being viewed by others

References

  • Baeza GP, Dessi C, Costanzo S, Zhao D, Gong S, Alegria A, Colby RH, Rubinstein M, Vlassopoulos D, Kumar SK (2016) Network dynamics in nanofilled polymers. Nat Commun 7:11368

    Article  Google Scholar 

  • Ballesta P, Petekidis G (2016) Creep and aging of hard-sphere glasses under constant stress. Phys Rev E 93:042613. https://doi.org/10.1103/PhysRevE.93.042613

    Article  CAS  Google Scholar 

  • Banchio AJ, Nägele G (2008) Short-time transport properties in dense suspensions: from neutral to charge-stabilized colloidal spheres. J Chem Phys 128(10):104903

    Article  Google Scholar 

  • Bard AJ (1980) LR Faulkner electrochemical methods. Wiley, New York

    Google Scholar 

  • Bartolino R, Durand G (1977) Plasticity in a smectic-liquid crystal. Phys Rev Lett 39(21):1346–1349. https://doi.org/10.1103/PhysRevLett.39.1346

    Article  CAS  Google Scholar 

  • Bharadwaj NA, Ewoldt RH (2015) Single-point parallel disk correction for asymptotically nonlinear oscillatory shear. Rheol Acta 54(3):223–233

    Article  CAS  Google Scholar 

  • Bird RB, Armstrong RC, Hassager O (1987) Dynamics of polymeric liquids. Volume 1: fluid mechanics. A Wiley-Interscience Publication, John Wiley & Sons

  • Booij H, Thoone G (1982) Generalization of Kramers-Kronig transforms and some approximations of relations between viscoelastic quantities. Rheol Acta 21(1):15–24

    Article  Google Scholar 

  • Bouzid M, Keshavarz B, Geri M, Divoux T, Del Gado E, McKinley GH (2018) Computing the linear viscoelastic properties of soft gels using an optimally windowed chirp protocol. J Rheol 62(4):1037–1050

    Article  CAS  Google Scholar 

  • Brack T, Bolisetty S, Dual J (2018) Simultaneous and continuous measurement of shear elasticity and viscosity of liquids at multiple discrete frequencies. Rheol Acta 57(5):415–428

    Article  CAS  Google Scholar 

  • Brady JF (1993) The rheological behavior of concentrated colloidal dispersions. J Chem Phys 99(1):567–581. https://doi.org/10.1063/1.465782

    Article  CAS  Google Scholar 

  • Brather A (1978) Numerisch einfache Beziehungen zwischen Verlust-und Speicherkomponente des dynamischen Schermoduls und der dynamischen Nachgiebigkeit. Rheol Acta 17(4):325–341

    Article  Google Scholar 

  • Bryant M, Keltie R (1986) A characterization of the linear and non-linear dynamic performance of a practical piezoelectric actuator part 1: measurements. Sensors Actuators 9(2):95–103

    Article  Google Scholar 

  • Bryant G, Williams SR, Qian L, Snook IK, Perez E, Pincet F (2002) How hard is a colloidal “hard-sphere” interaction? Phys Rev E Stat Nonlinear Soft Matter Phys 66(6 Pt 1):060501. https://doi.org/10.1103/PhysRevE.66.060501

    Article  CAS  Google Scholar 

  • Cheng Z, Zhu J, Chaikin PM, Phan SE, Russel WB (2002) Nature of the divergence in low shear viscosity of colloidal hard-sphere dispersions. Phys Rev E Stat Nonlinear Soft Matter Phys 65(4 Pt 1):041405. https://doi.org/10.1103/PhysRevE.65.041405

    Article  CAS  Google Scholar 

  • Colby RH (1989) Breakdown of time-temperature superposition in miscible polymer blends. Polymer 30(7):1275–1278

    Article  CAS  Google Scholar 

  • Colby RH, Fetters LJ, Graessley WW (1987) The melt viscosity-molecular weight relationship for linear polymers. Macromolecules 20(9):2226–2237

    Article  CAS  Google Scholar 

  • Colby RH, Fetters LJ, Funk WG, Graessley WW (1991) Effects of concentration and thermodynamic interaction on the viscoelastic properties of polymer solutions. Macromolecules 24(13):3873–3882

    Article  CAS  Google Scholar 

  • Collin D, Martinoty P (2003) Dynamic macroscopic heterogeneities in a flexible linear polymer melt. Physica A: Statistical Mechanics and its Applications 320:235–248

    Article  CAS  Google Scholar 

  • Cooper J, Henry F, Reiss EL (1966) Reflection of plane viscoelastic waves from plane boundaries. The Journal of the Acoustical Society of America 39(6):1133–1138

    Article  Google Scholar 

  • Dealy J, Giacomin A (1998) Sliding plate and sliding cylinder rheometers Rheological Measurement (pp. 237-259): Springer

  • Dealy J, Plazek D (2009) Time-temperature superposition—a users guide. Rheol Bull 78(2):16–31

    Google Scholar 

  • Dhont JK, Wagner NJ (2001) Superposition rheology. Phys Rev E 63(2):021406

    Article  CAS  Google Scholar 

  • Doi M, Edwards SF (1988) The theory of polymer dynamics (Vol. 73): oxford university press

  • El Rifai OM, Youcef-Toumi K (2004) Modeling of piezoelectric tube actuators

  • Erwin BM, Rogers SA, Cloitre M, Vlassopoulos D (2010) Examining the validity of strain-rate frequency superposition when measuring the linear viscoelastic properties of soft materials. J Rheol 54(2):187–195

    Article  CAS  Google Scholar 

  • Ewing MW (1957) Elastic waves in layered media: McGraw-Hill

  • Ferry JD (1980) Viscoelastic properties of polymers: John Wiley & Sons

  • Franck A (2005) Understanding instrument inertia corrections in oscillation. TA Instrument

  • Fritz G, Maranzano B, Wagner N, Willenbacher N (2002) High frequency rheology of hard sphere colloidal dispersions measured with a torsional resonator. J Non-Newtonian Fluid Mech 102(2):149–156

    Article  CAS  Google Scholar 

  • Fritz G, Pechhold W, Willenbacher N, Wagner NJ (2003) Characterizing complex fluids with high frequency rheology using torsional resonators at multiple frequencies. J Rheol 47(2):303–319. https://doi.org/10.1122/1.1538608

    Article  CAS  Google Scholar 

  • Gallani J, Hilliou L, Martinoty P, Keller P (1994) Abnormal viscoelastic behavior of side-chain liquid-crystal polymers. Phys Rev Lett 72(13):2109–2112

    Article  CAS  Google Scholar 

  • Gautschi G (2002) Piezoelectric sensors Piezoelectric Sensorics (pp. 73-91): Springer

  • Ghiringhelli E, Roux D, Bleses D, Galliard H, Caton F (2012) Optimal fourier rheometry. Rheol Acta 51(5):413–420

    Article  CAS  Google Scholar 

  • Gold B, Pyckhout-Hintzen W, Wischnewski A, Radulescu A, Monkenbusch M, Allgaier J et al (2019) Direct assessment of tube dilation in entangled polymers. Phys Rev Lett 122(8):088001

    Article  CAS  Google Scholar 

  • Goldfarb M, Celanovic N (1997) Modeling piezoelectric stack actuators for control of micromanipulation. IEEE Control Syst 17(3):69–79

    Article  Google Scholar 

  • Gotze W, Sjogren L (1992) Relaxation processes in supercooled liquids. Rep Prog Phys 55(3):241–376

    Article  Google Scholar 

  • Gozen BA, Ozdoganlar OB (2012) A method for open-loop control of dynamic motions of piezo-stack actuators. Sensors Actuators A Phys 184:160–172

    Article  Google Scholar 

  • Graessley WW (2008) Polymeric liquids and networks: dynamics and rheology: Garland Science

  • Hall R, Kang B-G, Lee S, Chang T, Venerus DC, Hadjichristidis N, … Larson RG (2019) Determining the dilution exponent for entangled 1, 4-polybutadienes using blends of near-monodisperse star with unentangled, low molecular weight linear polymers. Macromolecules

  • Hecksher T, Torchinsky DH, Klieber C, Johnson JA, Dyre JC, Nelson KA (2017) Toward broadband mechanical spectroscopy. Proc Natl Acad Sci U S A 114(33):8710–8715. https://doi.org/10.1073/pnas.1707251114

    Article  CAS  Google Scholar 

  • Hopkins CC, de Bruyn JR (2016) Vibrating wire rheometry. J Non-Newtonian Fluid Mech 238:205–211

    Article  CAS  Google Scholar 

  • Huang Q, Mednova O, Rasmussen HK, Alvarez NJ, Skov AL, Almdal K, Hassager O (2013) Concentrated polymer solutions are different from melts: role of entanglement molecular weight. Macromolecules 46(12):5026–5035. https://doi.org/10.1021/ma4008434

    Article  CAS  Google Scholar 

  • Hudson R, Holder A, Hawkins K, Williams P, Curtis D (2017) An enhanced rheometer inertia correction procedure (ERIC) for the study of gelling systems using combined motor-transducer rheometers. Phys Fluids 29(12):121602

    Article  Google Scholar 

  • Ikeda A, Berthier L, Sollich P (2013) Disentangling glass and jamming physics in the rheology of soft materials. Soft Matter 9(32):7669. https://doi.org/10.1039/c3sm50503k

    Article  CAS  Google Scholar 

  • Kapnistos M, Vlassopoulos D, Roovers J, Leal L (2005) Linear rheology of architecturally complex macromolecules: comb polymers with linear backbones. Macromolecules 38(18):7852–7862

    Article  CAS  Google Scholar 

  • Kibble TW, Berkshire FH (2004) Classical mechanics: world scientific publishing company

  • Kim SA, Mangal R, Archer LA (2015) Relaxation dynamics of nanoparticle-tethered polymer chains. Macromolecules 48(17):6280–6293

    Article  CAS  Google Scholar 

  • Kirschenmann L, Pechhold W (2002) Piezoelectric rotary vibrator (PRV) – a new oscillating rheometer for linear viscoelasticity. Rheol Acta 41(4):362–368. https://doi.org/10.1007/s00397-002-0229-z

    Article  CAS  Google Scholar 

  • Koumakis N, Pamvouxoglou A, Poulos AS, Petekidis G (2012) Direct comparison of the rheology of model hard and soft particle glasses. Soft Matter 8(15):4271. https://doi.org/10.1039/c2sm07113d

    Article  CAS  Google Scholar 

  • Kramers HA (1927) La diffusion de la lumiere par les atomes. Paper presented at the Atti Cong. Intern. Fisica (Transactions of Volta Centenary Congress) Como

  • Kremer F, Schönhals A (2012) Broadband dielectric spectroscopy: Springer Science & Business Media

  • Kronig RDL (1926) On the theory of dispersion of x-rays. Josa 12(6):547–557

    Article  CAS  Google Scholar 

  • Läuger J, Stettin H (2016) Effects of instrument and fluid inertia in oscillatory shear in rotational rheometers. J Rheol 60(3):393–406. https://doi.org/10.1122/1.4944512

    Article  CAS  Google Scholar 

  • Likhtman AE, McLeish TC (2002) Quantitative theory for linear dynamics of linear entangled polymers. Macromolecules 35(16):6332–6343

    Article  CAS  Google Scholar 

  • Lionberger RA, Russel WB (1994) High frequency modulus of hard sphere colloids. J Rheol 38(6):1885–1908. https://doi.org/10.1122/1.550530

    Article  CAS  Google Scholar 

  • Lionberger RA, Russel W (2000) Microscopic theories of the rheology of stable colloidal dispersions. Adv Chem Phys 111:399–474

    CAS  Google Scholar 

  • Liu C, He J, Ruymbeke E v, Keunings R, Bailly C (2006) Evaluation of different methods for the determination of the plateau modulus and the entanglement molecular weight. Polymer 47(13):4461–4479. https://doi.org/10.1016/j.polymer.2006.04.054

    Article  CAS  Google Scholar 

  • Mackay M, Cathey C (1991) A device to measure the dynamic shear properties of small samples. J Rheol 35(2):237–256

    Article  CAS  Google Scholar 

  • Macosko CW (1994) Rheology: principles, measurements, and applications: Wiley-vch

  • Mason TG (2000) Estimating the viscoelastic moduli of complex fluids using the generalized stokes–Einstein equation. Rheol Acta 39(4):371–378

    Article  CAS  Google Scholar 

  • Mason TG, Weitz DA (1995) Linear viscoelasticity of colloidal hard sphere suspensions near the glass transition. Phys Rev Lett 75(14):2770–2773. https://doi.org/10.1103/PhysRevLett.75.2770

    Article  CAS  Google Scholar 

  • Mattarelli M, Montagna M, Still T, Schneider D, Fytas G (2012) Vibration spectroscopy of weakly interacting mesoscopic colloids. Soft Matter 8(15):4235. https://doi.org/10.1039/c2sm07034k

    Article  CAS  Google Scholar 

  • McKenna GB (2006) Commentary on rheology of polymers in narrow gaps. Eur Phys J E Soft Matter 19(1):101–108; discussion 109-111. https://doi.org/10.1140/epje/e2006-00001-0

    Article  CAS  Google Scholar 

  • Mewis J, Haene P (1993) Prediction of rheological properties in polymer colloids. Paper presented at the Macromolecular Symposia

  • Mewis J, Wagner NJ (2012) Colloidal suspension rheology. Cambridge University Press, Cambridge

    Google Scholar 

  • Morrison R (1967) Grounding and shielding techniques in instrumentation. Wiley, New York, p 1967

    Google Scholar 

  • Müller G, Weber M, Rümpker G, Gajewski D (2007) Theory of elastic waves: Geoforschungszentrum

  • Nemirovsky Y, Nemirovsky A, Muralt P, Setter N (1996) Design of novel thin-film piezoelectric accelerometer. Sensors Actuators A Phys 56(3):239–249

    Article  CAS  Google Scholar 

  • Nommensen P, Duits MH, Van den Ende D, Mellema J (2000) Elastic modulus at high frequency of polymerically stabilized suspensions. Langmuir 16(4):1902–1909

    Article  CAS  Google Scholar 

  • Parot JM, Duperray B (2007) Applications of exact causality relationships to materials dynamic analysis. Mech Mater 39(5):419–433. https://doi.org/10.1016/j.mechmat.2006.07.004

    Article  Google Scholar 

  • Pham K, Petekidis G, Vlassopoulos D, Egelhaaf S, Poon W, Pusey P (2008) Yielding behavior of repulsion-and attraction-dominated colloidal glasses. J Rheol 52(2):649–676

    Article  CAS  Google Scholar 

  • Phillips R, Brady J, Bossis G (1988) Hydrodynamic transport properties of hard-sphere dispersions. I Suspensions of freely mobile particles. Phys Fluids 31(12):3462–3472

    Article  CAS  Google Scholar 

  • Plazek DJ (1996) 1995 Bingham Medal Address: oh, thermorheological simplicity, wherefore art thou? J Rheol 40(6):987–1014. https://doi.org/10.1122/1.550776

    Article  CAS  Google Scholar 

  • Poon WC, Weeks ER, Royall CP (2012) On measuring colloidal volume fractions. Soft Matter 8(1):21–30

    Article  CAS  Google Scholar 

  • Preumont A (2006) Mechatronics: Springer

  • Pritz T (2005) Unbounded complex modulus of viscoelastic materials and the Kramers–Kronig relations. J Sound Vib 279(3–5):687–697

    Article  Google Scholar 

  • Pusey P (1991) Colloidal suspensions in liquids, freezing, and the glass transition: les Houches

  • Pusey P (2008) Colloidal glasses. J Phys Condens Matter 20(49):494202

    Article  Google Scholar 

  • Rosedale J, Bates FS (1990) Rheology of ordered and disordered symmetric poly (ethylenepropylene)-poly (ethylethylene) diblock copolymers. Macromolecules 23(8):2329–2338

    Article  CAS  Google Scholar 

  • Roth M, D’Acunzi M, Vollmer D, Auernhammer GK (2010) Viscoelastic rheology of colloid-liquid crystal composites. J Chem Phys 132(12):124702

    Article  CAS  Google Scholar 

  • Rouleau L, Deü JF, Legay A, Le Lay F (2013) Application of Kramers–Kronig relations to time–temperature superposition for viscoelastic materials. Mech Mater 65:66–75. https://doi.org/10.1016/j.mechmat.2013.06.001

    Article  Google Scholar 

  • Royall CP, Poon WCK, Weeks ER (2013) In search of colloidal hard spheres. Soft Matter 9(1):17–27. https://doi.org/10.1039/c2sm26245b

    Article  CAS  Google Scholar 

  • Rubinstein M, Colby RH (2003) Polymer physics (Vol. 23). Oxford University Press, New York

    Google Scholar 

  • Sánchez AM, Prieto R, Laso M, Riesgo T (2008) A piezoelectric minirheometer for measuring the viscosity of polymer microsamples. IEEE Trans Ind Electron 55(1):427–436

    Article  Google Scholar 

  • Schaertl W, Sillescu H (1994) Brownian dynamics of polydisperse colloidal hard spheres: equilibrium structures and random close packings. J Stat Phys 77(5–6):1007–1025

    Article  Google Scholar 

  • Schrag JL (1977) Deviation of velocity gradient profiles from the “gap loading” and “surface loading” limits in dynamic simple shear experiments. Trans Soc Rheol 21(3):399–413

    Article  Google Scholar 

  • Schrag J, Guess J, Thurston G (1965) Shear-wave interference observed by optical birefringence induced in a viscoelastic liquid. J Appl Phys 36(6):1996–2000

    Article  Google Scholar 

  • Schroyen B (2018) Bulk rheometry at high frequencies: a review of experimental approaches. In preparation

  • Schroyen B, Swan JW, Van Puyvelde P, Vermant J (2017) Quantifying the dispersion quality of partially aggregated colloidal dispersions by high frequency rheology. Soft Matter 13(43):7897–7906

    Article  CAS  Google Scholar 

  • Schroyen B, Hsu C-P, Isa L, Van Puyvelde P, Vermant J (2019) Stress contributions in colloidal suspensions: the smooth, the rough, and the hairy. Phys Rev Lett 122(21):218001

    Article  CAS  Google Scholar 

  • Shikata T, Pearson DS (1994) Viscoelastic behavior of concentrated spherical suspensions. J Rheol 38(3):601–616. https://doi.org/10.1122/1.550477

    Article  Google Scholar 

  • Sierou A, Brady JF (2001) Accelerated Stokesian dynamics simulations. J Fluid Mech 448. doi: https://doi.org/10.1017/s0022112001005912

  • Simon SL, Mckenna GB, Sindt O (2000) Modeling the evolution of the dynamic mechanical properties of a commercial epoxy during cure after gelation. J Appl Polym Sci 76(4):495–508

    Article  CAS  Google Scholar 

  • Sirohi J, Chopra I (2000) Fundamental understanding of piezoelectric strain sensors. J Intell Mater Syst Struct 11(4):246–257

    Article  CAS  Google Scholar 

  • Sternstein S (1983) Transient and dynamic characterization of viscoelastic solids: ACS publications

  • Stettin H (2016) Resonances in oscillatory rheometry. Appl Rheol 26(2):31–42

    Google Scholar 

  • Szántó L, Vogt R, Meier J, Auhl D, Van Ruymbeke E, Friedrich C (2017) Entanglement relaxation time of polyethylene melts from high-frequency rheometry in the mega-hertz range a. J Rheol 61(5):1023–1033

    Article  Google Scholar 

  • Vaikuntanathan S, Jarzynski C (2009) Dissipation and lag in irreversible processes. EPL (Europhysics Letters) 87(6):60005

    Article  Google Scholar 

  • Van Ruymbeke E, Masubuchi Y, Watanabe H (2012) Effective value of the dynamic dilution exponent in bidisperse linear polymers: from 1 to 4/3. Macromolecules 45(4):2085–2098

    Article  Google Scholar 

  • Velankar S, Giles D (2007) How do I know if my phase angles are correct? Rheol. Bull, 76(8)

  • Vermant J, Moldenaers P, Mewis J, Ellis M, Garritano R (1997) Orthogonal superposition measurements using a rheometer equipped with a force rebalanced transducer. Rev Sci Instrum 68(11):4090–4096

    Article  CAS  Google Scholar 

  • Vleminckx G, Clasen C (2014) The dark side of microrheology: non-optical techniques. Curr Opin Colloid Interface Sci 19(6):503–513. https://doi.org/10.1016/j.cocis.2014.11.002

    Article  CAS  Google Scholar 

  • Walsh D, Zoller P (1995) Standard pressure volume temperature data for polymers: CRC press

  • Wang Y-Z, Wang G-H, Xiong X-M, Wang B, Zhang L-M, Zhang J-X (2010) Viscoelastic measurement of complex fluids using forced oscillating torsion resonator with continuously varying frequency capability. Rheol Acta 49(11–12):1117–1126. https://doi.org/10.1007/s00397-010-0484-3

    Article  CAS  Google Scholar 

  • Wang G, Chen G, Bai F (2015) High-speed and precision control of a piezoelectric positioner with hysteresis, resonance and disturbance compensation. Microsyst Technol 22(10):2499–2509. https://doi.org/10.1007/s00542-015-2638-9

    Article  Google Scholar 

  • Wen YH, Schaefer JL, Archer LA (2015) Dynamics and rheology of soft colloidal glasses. ACS Macro Lett 4(1):119–123. https://doi.org/10.1021/mz5006662

    Article  CAS  Google Scholar 

  • Willenbacher N, Oelschlaeger C (2007) Dynamics and structure of complex fluids from high frequency mechanical and optical rheometry. Curr Opin Colloid Interface Sci 12(1):43–49. https://doi.org/10.1016/j.cocis.2007.03.004

    Article  CAS  Google Scholar 

  • Winter HH (1997) Analysis of dynamic mechanical data: inversion into a relaxation time spectrum and consistency check. J Non-Newtonian Fluid Mech 68(2–3):225–239

    Article  CAS  Google Scholar 

  • Yamamoto J, Okano K (1991) Anomalous hydrodynamic behaviors of smectic liquid crystals at low frequencies. Jpn J Appl Phys 30(4R):754–763

    Article  CAS  Google Scholar 

  • Yamamoto J, Nakamura H, Okano K (1987) Apparatus for measurement of complex shear modulus of liquid crystals at low frequencies. Jpn J Appl Phys 26(S1):29

    Article  Google Scholar 

Download references

Acknowledgements

We thank A. B. Schofield for providing the PMMA particles, N. Hadjichristidis and H. Iatrou for providing and performing molecular characterization of the linear PBD samples, respectively, and D. Papazoglou, B. Schroyen, and J. Vermant for stimulating discussions. We acknowledge the contributions of D. Parisi, S. Costanzo, A. Mavromanolakis, and A. R. Jacob.

Funding

This study was financially supported by the EU (Horizon 2020 EUSMI GA731019).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George Petekidis.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Athanasiou, T., Auernhammer, G.K., Vlassopoulos, D. et al. A high-frequency piezoelectric rheometer with validation of the loss angle measuring loop: application to polymer melts and colloidal glasses. Rheol Acta 58, 619–637 (2019). https://doi.org/10.1007/s00397-019-01163-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00397-019-01163-x

Keywords

Navigation