Skip to main content
Log in

High-speed and precision control of a piezoelectric positioner with hysteresis, resonance and disturbance compensation

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

A novel composite control strategy is developed in this paper to compensate hysteresis, resonance and disturbances in a piezo-actuated nanopositioner. The control objective of the piezoelectric positioner is to achieve high tracking performance in terms of accuracy and speed. For this purpose, a Bouc–Wen model based hysteresis compensator is first applied to mitigate the hysteresis nonlinearity without the complex inverse hysteresis calculation. And then, the linear dynamic of the hysteresis compensated system is identified and inverted to account for the resonance. A model-based inversion feed-forward controller is designed to achieve high speed tracking. Afterwards, a high-gain feedback controller is designed based on a notch filter to handle the modeling inaccuracy and all kinds of disturbances. So, the feed-forward controller can be augmented to the feedback controller to realize high speed and precision tracking. The enhancement of tracking performance is demonstrated through several comparative experiments. The performance of 70 Hz bandwidth and 0.281 μm precision can be achieved, which validated the effectiveness of the proposed composite control scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Al Janaideh M, Rakheja S, Su CY (2011) An analytical generalized Prandtl–Ishlinskii model inversion for hysteresis compensation in micropositioning control. IEEE/ASME Trans Mechatron 16(4):734–744

    Article  Google Scholar 

  • Ando T, Uchihashi T, Fukuma T (2008) High-speed atomic force microscopy for nanovisualization of dynamic biomolecular processes. Prog Surf Sci 83:337–437

    Article  Google Scholar 

  • Braunsmann C, Schaffer TE (2010) High-speed atomic force microscopy for large scan sizes using small cantilevers. Nanotechnology 21:225705

    Article  Google Scholar 

  • Chae KW, Kim W-B, Jeong YH (2011) A transparent polymeric flexure-hinge nanopositioner, actuated by a piezoelectric stack actuator. Nanotechnology 22:335501

    Article  Google Scholar 

  • Chang S, Yi J, Shen Y (2009) Disturbance observer-based hysteresis compensation for piezoelectric actuators. In: Proceedings of American control conference, pp 4196–4201

  • Chen X, Li Y (2007) A modified PSO structure resulting in high exploration ability with convergence guaranteed. IEEE Trans Cybern 37(5):1271–1289

    Article  Google Scholar 

  • Chen BM, Lee TH, Hang CC, Guo Y, Weerasmriya S (1999) An H-infinite almost disturbance decoupling robust controller design for a piezoelectric bimorph actuator with hysteresis. IEEE Tran Autom Control 7(2):160–174

    Google Scholar 

  • Clayton GM, Tien S, Leang KK, Zou Q, Devasia S (2009) A review of feedforward control approaches in nanopositioning for high-speed SPM. J Dyn Syst Meas Control 131(6):061101

    Article  Google Scholar 

  • Croft D, Shed G, Devasia S (2001) Creep, hysteresis, and vibration compensation for piezoactuators: atomic force microscopy application. ASME J Dyn Syst Meas Control 123(1):35–43

    Article  Google Scholar 

  • Garrett MC, Szuchi T, Kam KL et al (2009) A review of feedforward control approaches in nanopositioning for high-speed SPM. J Dyn Syst Meas Control-Trans ASME 131(6):061101

    Article  Google Scholar 

  • Ge P, Jouaneh M (1996) Tracking control of a piezoceramic actuator. IEEE Trans Control Syst Technol 4(3):209–216

    Article  Google Scholar 

  • Goldfarb M, Celanovic N (1997) Modeling piezoelectric stack actuators for control of micromanipulation. IEEE Contr Syst Mag 17(3):69–79

    Article  MATH  Google Scholar 

  • Gozen BA, Ozdoganlar OB (2012) A method for open-loop control of dynamic motions of piezo-stack actuators. Sens Actuators A Phys 184:160–172

    Article  Google Scholar 

  • Gu GY, Zhu LM (2011) Modeling of rate-dependent hysteresis in piezoelectric actuators using a family of ellipses. Sens Actuators A Phys 165(2):202–209

    Article  Google Scholar 

  • Gu G, Zhu L (2013a) Motion control of piezoceramic actuators with creep, hysteresis and vibration compensation. Sens Actuat A Phys 197:76–87

    Article  Google Scholar 

  • Gu G-Y, Zhu L-M (2013b) Motion control of piezoceramic actuators with creep, hysteresis and vibration compensation. Sens Actuators A Phys 197:76–87

    Article  Google Scholar 

  • Gu GY, Zhu LM, Su CY, Ding H (2013) Motion control of piezoelectric positioning stages: modeling, controller design and experimental evaluation. IEEE/ASME Trans Mechatron 18(5):1459–1471

    Article  Google Scholar 

  • Gu G, Zhu L, Su C (2014) Integral resonant damping for high-bandwidth control of piezoceramic stack actuators with asymmetric hysteresis nonlinearity. Mechatronics 24(4):367–375

    Article  Google Scholar 

  • Higuchi T (2010) Next generation actuators leading breakthroughs. J Mech Sci Technol 24:13–18

    Article  Google Scholar 

  • Huang D, Xu J-X, Venkataramanan V, The Cat Tuong Huynh (2014) High-performance tracking of piezoelectric positioning stage using current-cycle iterative learning control with gain scheduling. IEEE Trans Industr Electron 61(2):1085

    Article  Google Scholar 

  • Humphris ADL, Miles MJ, Hobbs JK (2005) A mechanical microscope: high-speed atomic force microscopy. Appl Phys Lett 86:034106

    Article  Google Scholar 

  • Leang KK, Devasia S (2007) Feedback-Linearized inverse feedforward for creep, hysteresis, and vibration compensation in AFM piezoactuators. IEEE Transac Control Syst Technol 15(5):927–935

    Article  Google Scholar 

  • Leang KK, Zou Q, Devasia S (2009) Feedforward control of piezoactuators in atomic force microscope systems inversion-based compensation for dynamics and hysteresis. IEEE Control Syst Mag 29(1):70–82

    Article  MathSciNet  Google Scholar 

  • Liaw HC, Shirinzadeh B (2009) Neural network motion tracking control of piezo-actuated flexure-based mechanisms for micro-/nanomanipulation. IEEE/ASME Trans Mechatron 15(4):517–527

    Article  Google Scholar 

  • Lei L et al (2013) Discrete composite control of piezoelectric actuators for high-speed and precision scanning. IEEE Trans Ind Inf 9(2):859–868

    Article  Google Scholar 

  • Lin C-M, Li H-Y (2014) Intelligent control using the wavelet fuzzy CMAC backstepping control system for two-axis linear piezoelectric ceramic motor drive systems. IEEE Trans Fuzzy Syst 22(4):791–802

    Article  Google Scholar 

  • Liu L, Tan KK, Lee TH (2014) Multirate-based composite controller design of piezoelectric actuators for high-bandwidth and precision tracking. IEEE Trans Control Syst Technol 22:2

    Article  Google Scholar 

  • Mahmood I, Moheimani S (2009) Making a commercial atomic force microscope more accurate and faster using positive position feedback control. Rev Sci Instrum 80:063705

    Article  Google Scholar 

  • Pantazi A, Sebastian A, Cherubini G, Lantz M, Pozidis H, Rothuizen H, Eleftheriou E (2007) Control of MEMS-based scanning-probe data-storage devices. IEEE Trans Control Syst Technol 15:824–841

    Article  Google Scholar 

  • Rakotondrabe M (2011) Bouc–Wen modeling and inverse multiplicative structure to compensate hysteresis nonlinearity in piezoelectric actuators. IEEE Trans Autom Sci Eng 8(2):428–431

    Article  Google Scholar 

  • Ruppel T, Osten W, Sawodny O (2011) Model-based feedforward control of large deformable mirrorsg. Eur J Control 3:261–272

    Article  MathSciNet  MATH  Google Scholar 

  • Shieh HJ, Hsu CH (2008) An adaptive approximator-based backstepping control approach for piezoactuator-driven stages. IEEE Trans Ind Electron 55(4):1729–1738

    Article  Google Scholar 

  • Tao G, Kokotovic PV (1995) Adaptive Control of Plants with Unknown Hysteresis. IEEE Trans Autom Control 40(2):200–212

    Article  MathSciNet  MATH  Google Scholar 

  • Tian F, Li K, Wang J, Wang H (2014) Adaptive backstepping sliding mode control of fast steering mirror driven by piezoelectric actuator. High Power Laser Part Beams 26(1):59–63

    Google Scholar 

  • Tuma T, Lygeros J, Kartik V, Sebastian A, Pantazi A (2012) High-speed multiresolution scanning probe microscopy based on Lissajous scan trajectories. Nanotechnology 23:185501

    Article  Google Scholar 

  • Vettiger P, Cross G, Despont M et al (2002) The millipede-nanotechnology entering data storage. IEEE Trans Nanotechnol 1:39–55

    Article  Google Scholar 

  • Viswamurthy S, Ganguli R (2007) Modeling and compensation of piezoceramic actuator hysteresis for helicopter vibration control. Sens Actuators A Phys 135(2):801–810

    Article  Google Scholar 

  • Vorbringer-Dorozhovets N, Hausotte T, Manske E, Shen JC, Jager G (2011) Novel control scheme for a high-speed meteorological scanning probe microscope. Meas Sci Technol 22(9):094012

    Article  Google Scholar 

  • Wang G, Rao C (2015) Adaptive control of piezoelectric fast steering mirror for high precision tracking application. Smart Mater Struct 24(3):035019

    Article  Google Scholar 

  • Wang G, Guan C, Zhang X, Zhou H, Rao C (2014) Precision control of piezo-actuated optical deflector with nonlinearity correction based on hysteresis model. Opt Laser Technol 57:26–31

    Article  Google Scholar 

  • Geng W, Jianwei N, Fuzhong B (2015) High precision tracking control of piezoelectric fast steering mirror based on self-tuning PID algorithm. J Henan Polytech Univ (Natural Science) accept

  • Wong PK, Xu Q, Vong CM, Wong HC (2012) Rate-dependent hysteresis modeling and control of a piezostage using online support vector machine and relevance vector machine. IEEE Trans Ind Electron 59(4):1988–2001

    Article  Google Scholar 

  • Wu Y, Zou Q (2009) Robust inversion-based 2-DOF control design for output tracking: piezoelectric-actuator example. IEEE Trans Control Syst Technol 17(5):1069–1082

    Article  Google Scholar 

  • Zhenyan W, Zhen Z, Jianqin M (2012) Precision tracking control of piezoelectric actuator based on Bouc–Wen hysteresis compensator. Electron Lett 48(23):1459–1460

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Doctoral Science Foundation of Henan Polytechnic University under Grant No. 60407/010.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geng Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, G., Chen, G. & Bai, F. High-speed and precision control of a piezoelectric positioner with hysteresis, resonance and disturbance compensation. Microsyst Technol 22, 2499–2509 (2016). https://doi.org/10.1007/s00542-015-2638-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-015-2638-9

Keywords

Navigation