Skip to main content

Advertisement

Log in

Boreal winter Arctic Oscillation as an indicator of summer SST anomalies over the western tropical Indian Ocean

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

The inter-annual relationship between the boreal winter Arctic Oscillation (AO) and summer sea surface temperature (SST) over the western tropical Indian Ocean (TIO) for the period from 1979 to 2015 is investigated. The results show that the January–February–March AO is significantly correlated with the June–July–August SST and SST tendency. When both El Niño/Southern Oscillation (ENSO) and the Indian Ocean Dipole (IOD) variance are excluded, the winter AO is significantly correlated with the regional mean SST of the western TIO (40\(^\circ\)\(60^\circ\)E and \(10^\circ\)S–\(10^\circ\)N), \(r=0.71\). The multi-month SST tendency, i.e., the SST difference of June–July–August minus April–May, is correlated with the winter AO at \(r=0.75\). Composite analysis indicates similar warming over the western TIO. Two statistical models are established to predict the subsequent summer’s SST and SST tendency. The models use the winter AO, the winter ENSO and the autumn-winter IOD indexes as predictors and explain 65 and 62 % of the variance of the subsequent summer’s SST and SST tendency, respectively. Investigation of the regional air–sea fluxes and oceanic dynamics reveals that the net surface heat flux cannot account for the warming, whereas the oceanic Rossby wave plays a predominant role. During positive AO winters, the enhanced Arabian High causes stronger northern winds in the northern Indian Ocean and leads to anomalous cross-equatorial air-flow. The Ekman pumping in association with the anomalous wind stress curl in the central TIO generates a significantly deeper thermocline and above-normal sea surface height at 60\(^\circ\)–75\(^\circ\)E and 5\(^\circ\)\(10^\circ\)S. The winter AO-forced Rossby wave propagates westward and arrives at the western coast in summer, resulting in the significant SST increase. Forced by the observed winter AO-related wind stress anomalies over the Indian Ocean, the ocean model reasonably reproduces the Rossby wave as well as the resulting surface ocean warming over the western TIO in the subsequent summer. Observational analysis and numerical experiments suggest the importance of the oceanic dynamics in connecting the winter AO and summer SST anomalies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Annamalai H, Liu P, Xie S-P (2005) Southwest Indian Ocean SST variability: its local effects and remote influence on Asian monsoons. J Clim 18:4150–4167

    Article  Google Scholar 

  • Arlot S, Celisse A (2010) A survey of cross-validation procedures for model selection. Stat Surv 4:40–79

    Article  Google Scholar 

  • Bleck R, Rooth C, Hu D, Smith LT (1992) Salinity-driven thermocline transients in a wind-and thermohaline-forced isopycnic coordinate model of the North Atlantic. J Phys Oceanogr 22:1486–1505

    Article  Google Scholar 

  • Carton JA, Giese BS (2008) A reanalysis of ocean climate using Simple Ocean Data Assimilation (SODA). Mon Weather Rev 136:2999–3017

    Article  Google Scholar 

  • Cayan DR (1992) Latent and sensible heat flux anomalies over the northern oceans: driving the sea surface temperature. J Phys Oceanogr 22:859–881

    Article  Google Scholar 

  • Chakravorty S, Gnanaseelan C, Chowdary JS, Luo J-J (2014) Relative role of El Niño and IOD forcing on the southern tropical Indian Ocean Rossby waves. J Geophys Res Oceans 119:5105–5122. doi:10.1002/C009713

    Article  Google Scholar 

  • Chakravorty S, Chowdary JS, Gnanaseelan C (2013) Spring asymmetric mode in the tropical Indian Ocean: role of El Niño and IOD. Clim Dyn 40(5–6):1467–1481. doi:10.1007/s00382-012-1340-1

    Article  Google Scholar 

  • Chakravorty S, Gnanaseelan C, Pillai PA (2016) Combined influence of remote and local SST forcing on Indian Summer Monsoon Rainfall variability. Clim Dyn. doi:10.1007/s00382-016-2999-5

    Google Scholar 

  • Chelton DB, deSzoeke RA, Schlax MG, El Naggar K, Siwertz N (1998) Geographical variability of the first baroclinic Rossby radius of deformation. J Phys Oceanogr 28:433–460

    Article  Google Scholar 

  • Chen S, Yu B, Chen W (2014) An analysis on the physical process of the influence of AO on ENSO. Clim Dyn 42:973–989

    Article  Google Scholar 

  • Chen S, Yu B, Chen W (2015a) An interdecadal change in the influence of the spring Arctic Oscillation on the subsequent ENSO around the early 1970s. Clim Dyn 44:1109–1126

    Article  Google Scholar 

  • Chen S, Wu R, Chen W, Yu B (2015b) Influence of the November Arctic Oscillation on the subsequent tropical Pacific sea surface temperature. Int J Climatol. doi:10.1002/joc.4228

    Google Scholar 

  • Chowdary JS, Gnanaseelan C, Xie SP (2009) Westward propagation of barrier layer formation in the 2006–07 Rossby wave event over the tropical southwest Indian Ocean. Geophys Res Lett 36:L04607. doi:10.1029/2008GL036642

    Article  Google Scholar 

  • de Boyer Montégut C, Madec G, Fischer AS, Lazar A, Iudicone D (2004) Mixed layer depth over the global ocean: an examination of profile data and a profile-based climatology. J Geophys Res 109:C12003. doi:10.1029/2004JC002378

    Article  Google Scholar 

  • Du Y, Xie S-P, Huang G, Hu K (2009) Role of air–sea interaction in the long persistence of El Niño-induced North Indian Ocean warming. J Clim 22:2023–2038

    Article  Google Scholar 

  • Du Y, Xie SP (2008) Role of atmospheric adjustments in the tropical Indian Ocean warming during the 20th century in climate models. Geophys Res Lett. doi:10.1029/2008GL033631

    Google Scholar 

  • Furevik T, Bentsen M, Drange H, Kindem I, Kvamstø NG, Sorteberg A (2003) Description and validation of the Bergen Climate Model: ARPEGE coupled with MICOM. Clim Dyn 21:27–51

    Article  Google Scholar 

  • Gnanaseelan C, Vaid BH (2010) Interannual variability in the biannual Rossby waves in the tropical Indian Ocean and its relation to Indian Ocean dipole and El Niño forcing. Ocean Dyn 60(1):27–40

    Article  Google Scholar 

  • Gong D-Y, Gao Y, Guo D, Mao R, Yang J, Hu M, Gao M (2014) Interannual linkage between Arctic/North Atlantic Oscillation and tropical Indian Ocean precipitation during boreal winter. Clim Dyn 42:1007–1027. doi:10.1007/s00382-013-1681-4

    Article  Google Scholar 

  • Gong D-Y, Yang J, Kim S-J, Gao Y, Guo D, Zhou T, Hu M (2011) Spring Arctic Oscillation-East Asian summer monsoon connection through circulation changes over the western North Pacific. Clim Dyn 37:2199–2216. doi:10.1007/s00382-011-1041-1

    Article  Google Scholar 

  • Hastie T, Tibshirani R, Friedman J (2009) The elements of statistical learning: data mining, inference, and prediction, 2nd edn. Springer, Berlin

    Book  Google Scholar 

  • Huang B, Kinter JL III (2002) The interannual variability in the tropical Indian Ocean. J Geophys Res 107(C11):3199. doi:10.1029/2001JC001278

    Article  Google Scholar 

  • Izumo T, Montégut CB, Luo J-J, Behera SK, Masson S, Yamagata T (2008) The role of the western Arabian Sea upwelling in Indian monsoon rainfall variability. J Clim 21:5603–5623

    Article  Google Scholar 

  • Jiang X, Yang S, Li J, Li Y, Hu H, Lian Y (2013) Variability of the Indian Ocean SST and its possible impact on summer western North Pacific anticyclone in the NCEP Climate Forecast System. Clim Dyn 41(7–8):2199–2212

    Article  Google Scholar 

  • Jury MR, Huang B (2004) The Rossby wave as a key mechanism of Indian Ocean climate variability. Deep-Sea Res I 51:2123–2136

    Article  Google Scholar 

  • Keerthi MG, Lengaigne M, Vialard J, de Boyer Montégut C, Muraleedharan PM (2013) Interannual variability of the Tropical Indian Ocean mixed layer depth. Clim Dyn 40:743–759

    Article  Google Scholar 

  • Kug J-S, Jin F-F, An S-I (2009) Two types of El Niño events: Cold tongue El Niño and warm pool El Niño. J Clim 22:1499–1515. doi:10.1175/2008JCLI2624.1

    Article  Google Scholar 

  • Kumar BP, Vialard J, Lengaigne M, Murty VSN, Foltz GR, McPhaden MJ, Pous S, de Boyer Montégut C (2014) Processes of interannual mixed layer temperature variability in the thermocline ridge of the Indian Ocean. Clim Dyn 43(9):2377–2397. doi:10.1007/s00382-014-2059-y

    Article  Google Scholar 

  • Lin H, Brunet G, Derome J (2009) An observed connection between the North Atlantic Oscillation and the Madden–Julian Oscillation. J Clim 22:364–380

    Article  Google Scholar 

  • Lin H, Brunet G (2011) Impact of the North Atlantic Oscillation on the forecast skill of the Madden–Julian Oscillation. Geophys Res Lett 38:L02802. doi:10.1029/2010GL046131

    Google Scholar 

  • Li G, Xie S-P, Du Y (2015) Climate model errors over the South Indian Ocean thermocline dome and their effect on the basin mode of interannual variability. J Clim 28:3093–3098

    Article  Google Scholar 

  • Li T, Zhang Y, Lu E, Wang D (2002) Relative role of dynamic and thermodynamic processes in the development of the Indian Ocean dipole: an OGCM diagnosis. Geophys Res Lett 29:2110. doi:10.1029/2002GL015789

    Google Scholar 

  • Li Y, Wang B, Chang C-P, Zhang Y (2003) A theory for the Indian Ocean dipole-zonal mode. J Atmos Sci 60:2119–2135

    Article  Google Scholar 

  • Luo FS, Li S, Furevik T (2011) The connection between the Atlantic Multidecadal Oscillation and the Indian summer monsoon in Bergen Climate Model Version 2.0. J Geophys Res 116:D19117. doi:10.1029/2011JD015848

    Article  Google Scholar 

  • Manola I, Selten FM, de Ruijter WPM, Hazeleger W (2015) The ocean–atmosphere response to wind-induced thermocline changes in the tropical South Western Indian Ocean. Clim Dyn 45:989–1007

    Article  Google Scholar 

  • Masumoto Y, Meyers G (1998) Forced Rossby waves in the southern tropical Indian Ocean. J Geophys Res 103:27589–27602

    Article  Google Scholar 

  • McPhaden MJ, Nagura M (2014) Indian Ocean Dipole interpreted in terms of Recharge Oscillator theory. Clim Dyn 42:1569–1586. doi:10.1007/s00382-013-1765-1

    Article  Google Scholar 

  • Nagura M, McPhaden MJ (2010) Wyrtki Jet dynamics: seasonal variability. J Geophys Res 115:C07009. doi:10.1029/2009JC005922

    Google Scholar 

  • Nakamura T, Tachibana Y, Honda M, Yamane S (2006) Influence of the northern hemisphere annular mode on ENSO by modulating westerly wind bursts. Geophys Res Lett 33:L07709. doi:10.1029/2005GL025432

    Google Scholar 

  • Meehl GA, Arblaster JM, Loschnigg J (2003) Coupled ocean–atmosphere dynamical processes in the tropical Indian and Pacific Oceans and the TBO. J Clim 16:2138–2158

    Article  Google Scholar 

  • NRC (National Research Council of the National Academies) (2010) Assessment of intraseasonal to interannual climate prediction and predictability. National Academies Press, Washington, DC

    Google Scholar 

  • Otterå OH, Bentsen M, Bethke I, Kvamstø NG (2009) Simulated pre-industrial climate in Bergen Climate Model (version 2): model description and large-scale circulation features. Geosci Model Dev 2:197–212

    Article  Google Scholar 

  • Pan LL, Li T (2008) Interactions between the tropical ISO and mid-latitude low-frequency flow. Clim Dyn 31:375–388

    Article  Google Scholar 

  • Rao SA, Dhakate AR, Saha SK, Mahapatra S, Chaudhari HS, Pokhrel S, Sahu SK (2012) Why is Indian Ocean warming consistently? Clim Change 110:709–719. doi:10.1007/s10584-011-0121-x

    Article  Google Scholar 

  • Rao SA, Behera SK (2005) Subsurface influence on SST in the tropical Indian Ocean: structure and interannual variability. Dyn Atmos Oceans 39:103–135

    Article  Google Scholar 

  • Reynolds RW, Rayner NA, Smith TM, Stokes DC, Wang W (2002) An improved in situ and satellite SST analysis for climate. J Clim 15:1609–1625

    Article  Google Scholar 

  • Saji NH, Goswami BN, Vinayachandran PN, Yamagata T (1999) A dipole mode in the tropical Indian Ocean. Nature 401:360–363

    Google Scholar 

  • Sayantani O, Gnanaseelan C (2015) Tropical Indian Ocean subsurface temperature variability and the forcing mechanisms. Clim Dyn 44:2447–2462

    Article  Google Scholar 

  • Schott FA, Xie S-P, McCreary P Jr (2009) Indian Ocean circulation and climate variability. Rev Geophys 47:RG1002. doi:10.1029/2007RG000245

    Article  Google Scholar 

  • Seiki A, Katsumata M, Horii T, Hasegawa T, Richards KJ, Yoneyama K, Shirooka R (2013) Abrupt cooling associated with the oceanic Rossby wave and lateral advection during CINDY2011. J Geophys Res Oceans 118:5523–5535. doi:10.1002/jgrc.20381

    Article  Google Scholar 

  • Smith TM, Reynolds RW, Peterson TC, Lawrimore J (2008) Improvements to NOAA’s historical merged land-ocean surface temperature analysis (1880–2006). J Clim 21:2283–2296

    Article  Google Scholar 

  • Taschetto AS, Ambrizzi T (2012) Can Indian Ocean SST anomalies influence South American rainfall? Clim Dyn 38:1615–1628

    Article  Google Scholar 

  • Taschetto AS, Gupta AS, Hendon HH, Ummenhofer CC, England MH (2011) The contribution of Indian Ocean sea surface temperature anomalies on Australian summer rainfall during El Niño events. J Clim 24(14):3734–3747

    Article  Google Scholar 

  • Trenary LL, Han W (2012) Intraseasonal-to-interannual variability of South Indian Ocean sea level and thermocline: remote versus local forcing. J Phys Oceanogr 42:602–607

    Article  Google Scholar 

  • Tozuka T, Nagura M, Yamagata T (2014) Influence of the reflected Rossby waves on the western Arabian Sea upwelling region. J Phys Oceanogr 44:1424–1438

    Article  Google Scholar 

  • Vasala V (2008) First and second baroclinic mode response of the tropical Indian Ocean to interannual equatorial wind anomalies. J Oceanogr 64:479–494

    Article  Google Scholar 

  • Wang X, Jiang X, Yang S, Li Y (2013) Different impacts of the two types of El Niño on Asian summer monsoon onset. Environ Res Lett 8(4):044053. doi:10.1088/1748-9326/8/4/044053

    Article  Google Scholar 

  • Webber BGM, Matthews AJ, Heywood KJ (2010) A dynamical ocean feedback mechanism for the Madden–Julian Oscillation. Q J R Meteorol Soc 136:740–754

    Google Scholar 

  • Webber BGM, Matthews AJ, Heywood KJ, Stevens DP (2012) Ocean Rossby waves as a triggering mechanism for primary Madden–Julian events. Q J R Meteorol Soc 138:514–527

    Article  Google Scholar 

  • Webster PJ, Moore AM, Loschnigg JP, Leben RR (1999) Coupled ocean–atmosphere dynamics in the Indian Ocean during 1997–98. Nature 401:356–360

    Article  Google Scholar 

  • Weng H, Ashok K, Behera SK, Rao SA, Yamagata T (2007) Impacts of recent El Niño Modoki on dry/wet conditions in the Pacific rim during boreal summer. Clim Dyn 29:113–129. doi:10.1007/s00382-007-0234-0

    Article  Google Scholar 

  • Wilks DS (2011) Statistical methods in the atmospheric sciences, 3rd edn. Academic Press, London

    Google Scholar 

  • Wu Q (2010) Forcing of tropical SST anomalies by wintertime AO-like variability. J Clim 23:2465–2472

    Article  Google Scholar 

  • Wu R, Kirtman BP, Krishnamurthy V (2008) An asymmetric mode of tropical Indian Ocean rainfall variability in boreal spring. J Geophys Res 113:D05104. doi:10.1029/2009/2007jd009316

    Article  Google Scholar 

  • Wu R, Yeh S-W (2010) A further study of the tropical Indian Ocean asymmetric mode in boreal spring. J Geophys Res 115:D08101. doi:10.1029/2009jd012999

    Google Scholar 

  • Wu R, Hu W (2015) Air-sea relationship association with precipitation anomaly changes and mean precipitation anomaly over the South China Sea and the Arabian Sea during the spring to summer transition. J Clim 28:7161–7181

    Article  Google Scholar 

  • Xiang B, Yu W, Li T, Wang B (2011) The critical role of the boreal summer mean state in the development of the IOD. Geophys Res Lett 38:L02710. doi:10.1029/2010GL045851

    Article  Google Scholar 

  • Xie S-P, Annamalai H, Schott FA, McCreary JP (2002) Structure and mechanisms of south Indian Ocean climate variability. J Clim 15:867–878

    Article  Google Scholar 

  • Xie S-P, Hu K, Hafner J, Tokinaga H, Du Y, Huang G, Sampe T (2009) Indian Ocean capacitor effect on Indo-Western Pacific climate during the summer following El Niño. J Clim 22:730–747

    Article  Google Scholar 

  • Yu W, Xiang B, Liu L, Liu N (2005) Understanding the origins of interannual thermocline variations in the tropical Indian Ocean. Geophys Res Lett 32:L24706. doi:10.1029/2005GL024327

    Article  Google Scholar 

  • Yu L, Jin X, Weller RA (2008) Multidecade global flux datasets from the Objectively Analyzed Air-Sea Fluxes (OAFlux) project: latent and sensible heat fluxes, ocean evaporation, and related surface meteorological variables. Woods Hole Oceanographic Institution OAFlux Project Tech. Rep. OA-2008-01, 64 pp

  • Yuan J, Feldstein SB, Lee S, Tan B (2011) The relationship between the North Atlantic jet and tropical convection over the Indian and western Pacific Oceans. J Clim 24:6100–6113

    Article  Google Scholar 

  • Zhou S, Miller AJ (2005) The interaction of the Madden–Julian Oscillation and the Arctic Oscillation. J Clim 18:143–159

    Article  Google Scholar 

  • Zhu J, Huang B, Kumar A, Kinter JL III (2015) Seasonality in prediction skill and predictable pattern of tropical Indian Ocean SST. J Clim 28:7962–7984

    Article  Google Scholar 

  • Zhuang W, Feng M, Du Y, Schiller A, Wang D (2013) Low-frequency sea level variability in the southern Indian Ocean and its impacts on the oceanic meridional transports. J Geophys Res Oceans 118:1302–1315. doi:10.1002/jgrc.20129

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by projects of NSFC-41375071, NSFC-41321001, and 2012GB955401. SJ Kim was supported by project PE16010 of the Korea Polar Research Institute. The SODA datasets were obtained from http://soda.tamu.edu. The air–sea flux data were provided by the WHOI OAFlux project (http://oaflux.whoi.edu) which was funded by the NOAA Climate Observations and Monitoring program. The ERSST and OISST data were provided by the NOAA/OAR/ESRL PSD from their Web site at http://www.esrl.noaa.gov/psd/. The comments and suggestions from two anonymous reviewers were helpful in improving the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dao-Yi Gong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gong, DY., Guo, D., Gao, Y. et al. Boreal winter Arctic Oscillation as an indicator of summer SST anomalies over the western tropical Indian Ocean. Clim Dyn 48, 2471–2488 (2017). https://doi.org/10.1007/s00382-016-3216-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-016-3216-2

Keywords

Navigation