Skip to main content
Log in

An analysis on the physical process of the influence of AO on ENSO

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

The influence of the spring AO on ENSO has been demonstrated in several recent studies. This analysis further explores the physical process of the influence of AO on ENSO using the NCEP/NCAR reanalysis data over the period 1958–2010. We focus on the formation of the westerly wind burst in the tropical western Pacific, and examine the evolution and formation of the atmospheric circulation, atmospheric heating, and SST anomalies in association with the spring AO variability. The spring AO variability is found to be independent from the East Asian winter monsoon activity. The spring AO associated circulation anomalies are supported by the interaction between synoptic-scale eddies and the mean-flow and its associated vorticity transportation. Surface wind changes may affect surface heat fluxes and the oceanic heat transport, resulting in the SST change. The AO associated warming in the equatorial SSTs results primarily from the ocean heat transport in the face of net surface heat flux damping. The tropical SST warming is accompanied by anomalous atmospheric heating in the subtropical north and south Pacific, which sustains the anomalous westerly wind in the equatorial western Pacific through a Gill-like atmospheric response from spring to summer. The anomalous westerly excites an eastward propagating and downwelling equatorial Kelvin wave, leading to SST warming in the tropical central-eastern Pacific in summer-fall. The tropical SST, atmospheric heating, and atmospheric circulation anomalies sustain and develop through the Bjerknes feedback mechanism, which eventually result in an El Niño-like warming in the tropical eastern Pacific in winter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Annamalai H, Xie S, McCreary J, Murtugudde R (2005) Impact of Indian Ocean Sea Surface Temperature on Developing El Niño. J Clim 18:302–319. doi:10.1175/JCLI-3268.1

    Article  Google Scholar 

  • Barnett T (1983) Interaction of the monsoon and Pacific trade wind system at interannual time scales Part I: the equatorial zone. Mon Weather Rev 111:756–773

    Article  Google Scholar 

  • Barnett T, Dümenil L, Schlese U, Roeckner E, Latif M (1989) The effect of Eurasian Snow cover on regional and global climate variations. J Atmos Sci 46:661–686

    Article  Google Scholar 

  • Battisti DS (1988) Dynamics and thermodynamics of a warming event in a coupled tropical atmosphere-ocean model. J Atmos Sci 45:2889–2919

    Article  Google Scholar 

  • Bjerknes J (1969) Atmospheric teleconnections from the equatorial pacific. Mon Wea Rev 97:163–172

    Article  Google Scholar 

  • Boer GJ (1986) A comparison of mass and energy budgets from two FGGE datasets and a GCM. Mon Weather Rev 114:885–902

    Article  Google Scholar 

  • Boer GJ (1993) Climate change and the regulation of the surface moisture and energy budgets. Clim Dyn 8:225–239

    Article  Google Scholar 

  • Branstator G (1995) Organization of storm track anomalies by recurring low-frequency circulation anomalies. J Atmos Sci 52:207–226

    Article  Google Scholar 

  • Bretherton CS, Widmann M, Dymnikov VP, Wallace JM, Bladé I (1999) The effective number of spatial degrees of freedom of a time-varying field. J Clim 12:1990–2009

    Article  Google Scholar 

  • Cayan DR (1992) Latent heat flux anomalies over the northern oceans: the connection to monthly atmospheric circulation. J Clim 5:354–369

    Article  Google Scholar 

  • Chen W, Kang LH (2006) Linkage between the Arctic Oscillation and winter climate over East Asia on the interannual timescale: role of quasi-stationary planetary wave. Chin J Atmos Sci 30:863–870

    Google Scholar 

  • Chen W, Graf HF, Huang RH (2000) The interannual variability of East Asian winter monsoon and its relation to the summer monsoon. Adv Atmos Sci 17:48–60

    Article  Google Scholar 

  • Chen W, Yang S, Huang RH (2005) Relationship between stationary planetary wave activity and the East Asian winter monsoon. J Geophys Res 110:D14110. doi:10.1029/2004JD005669

    Article  Google Scholar 

  • Chiang JCH, Vimont DJ (2004) Analogous Pacific and Atlantic Meridional Modes of Tropical Atmosphere–Ocean Variability. J Clim 17:4143–4158. doi:10.1175/JCLI4953.1

    Article  Google Scholar 

  • Ding YH (1987) Monsoons over China. Springer, New York, p 419

    Google Scholar 

  • Enfield DB, Mayer DA (1997) Tropical Atlantic sea surface temperature variability and its relation to El Niño-Southern Oscillation. J Geophys Res 102:929–945

    Article  Google Scholar 

  • Gill AE (1980) Some simple solutions for heat-induced tropical circulation. Q J Roy Meteor Soc 106:447–462

    Article  Google Scholar 

  • Gong DY, Wang SW, Zhu JH (2001) East Asian winter monsoon and Arctic oscillation. Geophys Res Lett 28:2073–2076

    Article  Google Scholar 

  • Gong DY, Yang J, Kim SJ, Gao Y, Guo D, Zhou T, Hu M (2011) Spring Arctic Oscillation-East Asian summer monsoon connection through circulation changes over the western North Pacific. Clim Dyn 37:2199–2216

    Article  Google Scholar 

  • Hendon HH, Hartmann DL (1985) Variability in a nonlinear model of the atmosphere with zonally symmetric forcing. J Atmos Sci 42:2783–2797

    Article  Google Scholar 

  • Horel JD, Wallace JM (1981) Planetary-scale atmospheric phenomena associated with the Southern Oscillation. Mon Weather Rev 109:813–829

    Article  Google Scholar 

  • Hoskins B, James IN, White GH (1983) The shape, propagation and mean-flow interaction of large-scale weather systems. J Atmos Sci 40:1595–1612

    Article  Google Scholar 

  • Huang R, Zhang R, Yan B (2001) Dynamical effect of the zonal wind anomalies over the tropical western Pacific on ENSO cycles. Sci Chin D 44:1089–1098

    Article  Google Scholar 

  • Jeong JH, Ho CH (2005) Changes in occurrence of cold surges over East Asia in association with Arctic Oscillation. Geophys Res Lett 32:L14704. doi:10.1029/2005GL023024

    Google Scholar 

  • Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin L, Iredell M, Sana S, White G, Woollen J, Zhu Y, Chelliah M, Ebisuzaki W, Higgins W, Janowiak J, Mo KC, Ropelewski C, Wang J, Leetmaa A, Reynolds R, Jenne R, Joseph D (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc 77:431–437

    Article  Google Scholar 

  • Kug JS, Jin FF (2009) Left-hand rule for synoptic eddy feedback on low-frequency flow. Geophys Res Lett 36:L05709. doi:10.1029/2008GL036435

    Google Scholar 

  • Lau NC (1988) Variability of the observed midlatitude storm tracks in relation to low- frequency changes in the circulation pattern. J Atmos Sci 45:2718–2743

    Article  Google Scholar 

  • L’Heureux ML, Higgins RW (2008) Boreal winter links between the Madden-Julian oscillation and the Arctic Oscillation. J Clim 21:3040–3050

    Article  Google Scholar 

  • Liebmann B, Smith CA (1996) Description of a complete (interpolated) outgoing longwave radiation dataset. Bull Am Meteor Soc 77:1275–1277

    Google Scholar 

  • Lim H, Chang CP (1981) A theory for midlatitude forcing of tropical motions during winter monsoons. J Atmos Sci 38:2377–2392

    Article  Google Scholar 

  • Limpasuvan V, Hartmann DL (1999) Eddies and the annular modes of climate variability. Geophys Res Lett 26:3133–3136

    Article  Google Scholar 

  • Limpasuvan V, Hartmann DL (2000) Wave-maintained annular modes of climate variability. J Clim 13:4414–4429

    Article  Google Scholar 

  • Liu J, Curry JA, Martinson DG (2004) Interpretation of recent Antarctic sea ice variability. Geophys Res Lett 31:L02205. doi:10.1029/2003GL018732

    Google Scholar 

  • Lorenz DJ, Hartmann DL (2001) Eddy-zonal flow feedback in the Southern Hemisphere. J Atmos Sci 58:3312–3327

    Article  Google Scholar 

  • Lorenz DJ, Hartmann DL (2003) Eddy-zonal flow feedback in the Northern Hemisphere winter. J Clim 16:1212–1227

    Article  Google Scholar 

  • Matsuno T (1966) Quasi-geostrophic motions in the equatorial area. J Meteor Soc Jpn 44:25–43

    Google Scholar 

  • Murakami M (1979) Large-scale aspects of deep convective activity over the GATE area. Mon Weather Rev 107:994–1013

    Article  Google Scholar 

  • Nakamura T, Tachibana Y, Honda M, Yamane S (2006) Influence of the Northern Hemisphere annular mode on ENSO by modulating westerly wind bursts. Geophys Res Lett 33:L07709. doi:10.1029/2005GL025432

    Google Scholar 

  • Nakamura T, Tachibana Y, Shimoda H (2007) Importance of cold and dry surges in substantiating the NAM and ENSO relationship. Geophys Res Lett 34:L22703. doi:10.1029/2007GL031220

    Article  Google Scholar 

  • Neelin JD, Battisti DS, Hirst AC, Jin FF, Wakata Y, Yamagata T, Zebiak SE (1998) ENSO theory. J Geophys Res 103:14261–14214, 14290

    Google Scholar 

  • North GR, Bell TL, Cahalan RF, Moeng FJ (1982a) Sampling errors in the estimation of empirical orthogonal functions. Mon Weather Rev 110:699–706

    Article  Google Scholar 

  • North GR, Moeng FJ, Bell TL, Cahalan RF (1982b) The latitude dependence of the variance of zonally averaged quantities. Mon Weather Rev 110:319–326

    Article  Google Scholar 

  • Ogi M, Yamazaki K, Tachibana Y (2005) The summer northern annular mode and abnormal summer weather in 2003. Geophys Res Lett 32:L04706. doi:10.1029/2004GL021528

    Google Scholar 

  • Peixoto JP, Oort AH (1992) Physics of climate. Springer, New York

    Google Scholar 

  • Plumb RA (1985) On the three-dimensional propagation of stationary waves. J Atmos Sci 42:217–229

    Article  Google Scholar 

  • Smith TM, Reynolds RW, Peterson TC, Lawrimore J (2008) Improvements to NOAA’s historical merged land-ocean surface temperature analysis (1880–2006). J Clim 21:2283–2296

    Article  Google Scholar 

  • Thompson DWJ, Wallace JM (1998) The Arctic Oscillation signature in the wintertime geopotential height and temperature fields. Geophys Res Lett 25:1297–1300

    Article  Google Scholar 

  • Thompson DWJ, Wallace JM (2000) Annular Modes in the extratropical circulation. Part I: Month-to-Month Variability*. J Clim 13:1000–1016

    Article  Google Scholar 

  • Thompson DWJ, Lee S, Baldwin MP (2002) Atmospheric processes governing the northern hemisphere annular mode/North Atlantic oscillation. Geophys Monogr 134:81–112

    Article  Google Scholar 

  • Trenberth K (1986) An assessment of the impact of transient eddies on the zonal flow during a blocking episode using localized Eliassen-Palm flux diagnostics. J Atmos Sci 43:2070–2087

    Article  Google Scholar 

  • Trenberth KE (1997) The definition of El Niño. Bull Am Meteor Soc 78:2771–2777

    Article  Google Scholar 

  • Trenberth KE, Solomon A (1994) The global heat balance: heat transports in the atmosphere and ocean. Clim Dyn 10:107–134

    Article  Google Scholar 

  • Vimont DJ, Wallace JM, Battisti DS (2003) The seasonal footprinting mechanism in the Pacific: implications for ENSO. J Clim 16:2668–2675

    Article  Google Scholar 

  • Vimont DJ, Alexander M, Fontaine A (2009) Midlatitude Excitation of Tropical Variability in the Pacific: the Role of Thermodynamic Coupling and Seasonality. J Clim 22:518–534. doi:10.1175/2008JCLI2220.1

    Article  Google Scholar 

  • Wallace J, Gutzler D (1981) Teleconnections in the geopotentiai height field during the Northern Hemisphere winter. Mon Wea Rev 109:784–812

    Article  Google Scholar 

  • Wallace JM, Rasmusson EM, Mitchell TP, Kousky VE, Sarachik ES, von Storch H (1998) On the structure and evolution of ENSO related climate variability in the tropical Pacific: lesson from TOGA. J Geophys Res 103:14, 241–14, 259

    Google Scholar 

  • Wang S-Y, L’Heureux M, Chia H-H (2012) ENSO prediction one year in advance using western North Pacific sea surface temperatures. Geophys Res Lett 39:L05702. doi:10.1029/2012GL050909

    Google Scholar 

  • Weisberg RH, Wang C (1997) A Western Pacific Oscillator Paradigm for the El Niño-Southern Oscillation. Geophys Res Lett 24:779–782

    Article  Google Scholar 

  • Wu R, Kirtman BP (2004) Impacts of the Indian Ocean on the Indian summer monsoon-ENSO relationship. J Clim 17:3037–3054

    Article  Google Scholar 

  • Yanai M, Esbensen S, Chu JH (1973) Determination of bulk properties of tropical cloud clusters from large-scale heat and moisture budgets. J Atmos Sci 30:611–627

    Article  Google Scholar 

  • Yu B, Boer GJ (2002) The roles of radiation and dynamical processes in the El Nino-like response to global warming. Clim Dyn 19:539–554

    Article  Google Scholar 

  • Yu B, Boer GJ (2004) The role of the western Pacific in decadal variability. Geophys Res Lett 31:L02204. doi:10.1029/2003GL018471

    Google Scholar 

  • Yu B, Shabbar A, Zwiers F (2007) The enhanced PNA-like climate response to Pacific interannual and decadal variability. J Clim 20:5285–5300

    Article  Google Scholar 

  • Zhang Y, Wang WC (1997) Model-simulated northern winter cyclone and anticyclone activity under a greenhouse warming scenario. J Clim 10:1616–1634

    Article  Google Scholar 

  • Zhou S, Miller AJ (2005) The interaction of the Madden-Julian oscillation and the Arctic Oscillation. J Clim 18:143–159

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported jointly by the National Basic Research Program of China Grant 2010CB428603 and the National Natural Science Foundation of China Grants 41230527 and 41025017. We thank two anonymous reviewers for their constructive suggestions and comments, which helped to improve the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shangfeng Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, S., Yu, B. & Chen, W. An analysis on the physical process of the influence of AO on ENSO. Clim Dyn 42, 973–989 (2014). https://doi.org/10.1007/s00382-012-1654-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-012-1654-z

Keywords

Navigation