Skip to main content

Advertisement

Log in

Processes of interannual mixed layer temperature variability in the thermocline ridge of the Indian Ocean

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

Sea-surface temperature interannual anomalies (SSTAs) in the thermocline ridge of the southwestern tropical Indian Ocean (TRIO) have several well-documented climate impacts. In this paper, we explore the physical processes responsible for SSTA evolution in the TRIO region using a combination of observational estimates and model-derived surface layer heat budget analyses. Vertical oceanic processes contribute most to SSTA variance from December to June, while lateral advection dominates from July to November. Atmospheric fluxes generally damp SSTA generation in the TRIO region. As a result of the phase opposition between the seasonal cycle of vertical processes and lateral advection, there is no obvious peak in SSTA amplitude in boreal winter, as previously noted for heat content anomalies. Positive Indian Ocean Dipole (IOD) events and the remote influence of El Niño induce comparable warming over the TRIO region, though IOD signals peak earlier (November–December) than those associated with El Niño (around March–May). Mechanisms controlling the SSTA growth in the TRIO region induced by these two climate modes differ strongly. While SSTA growth for the IOD mostly results from southward advection of warmer water, increased surface shortwave flux dominates the El Niño SSTA growth. In both cases, vertical oceanic processes do not contribute strongly to the initial SSTA growth, but rather maintain the SSTA by opposing the effect of atmospheric negative feedbacks during the decaying phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Notes

  1. We will discuss the apparent contradiction with results from Sects. 4, 5, 6.

References

  • Annamalai H, Murtugudde R, Potemra J, Xie SP, Liu P, Wang B (2003) Coupled dynamics over the Indian Ocean: spring initiation of the zonal mode. Deep Sea Res II 50:2305–2330

    Article  Google Scholar 

  • Annamalai H, Liu P, Xie S-P (2005) Southwest Indian Ocean SST variability: its local effect and remote influence on Asian monsoons. J Clim 18:4150–4167

    Article  Google Scholar 

  • Annamalai H, Okajima H, Watanabe M (2007) Possible impact of the Indian Ocean SST on the Northern Hemisphere during El Niño. J Clim 20:3164–3189

    Article  Google Scholar 

  • Barnier B et al (2006) Impact of partial steps and momentum advection schemes in a global ocean circulation model at eddy permitting resolution. Ocean Dyn 56:543–567. doi:10.1007/s10236-006-0082-1

    Article  Google Scholar 

  • Bonjean F, Lagerloef GSE (2002) Diagnostic model and analysis of the surface currents in the tropical Pacific Ocean. J Phys Oceanogr 32:2938–2954

    Article  Google Scholar 

  • Brodeau L, Barnier B, Treguier AM, Penduff T, Gulev S (2010) An ERA40-based atmospheric forcing for global ocean circulation models. Ocean Model 31:88–104. doi:10.1016/j.ocemod.2009.10.005

    Article  Google Scholar 

  • Carton JA, Giese BS (2008) A reanalysis of ocean climate using simple ocean data assimilation (SODA). Mon Weather Rev 136:2999–3017

    Article  Google Scholar 

  • Cassou C (2008) Intraseasonal interaction between the Madden–Julian Oscillation and the North Atlantic Oscillation. Nature 455:523–527

    Article  Google Scholar 

  • Currie J, Lengaigne M, Vialard J, Kaplan D, Aumont O, Maury O (2013) Indian Ocean Dipole and El Niño/Southern Oscillation impacts on regional chlorophyll anomalies in the Indian Ocean. Biogeosciences 10:5841–5888

    Article  Google Scholar 

  • Cuypers Y, Le Vaillant X, Bouruet-Aubertot P, Vialard J, McPhaden MJ (2013) Tropical storm-induced near inertial internal waves during the Cirene experiment: energy fluxes and impact on vertical mixing. J Geophys Res 118:358–380

    Google Scholar 

  • de Boyer Montegut C, Madec G, Fischer AS, Lazar A, Iudicone D (2004) Mixed layer depth over the global ocean: an examination of profile data and a profile-based climatology. J Geophys Res 109:C12003. doi:10.1029/2004JC002378

    Article  Google Scholar 

  • De Boyer Montégut C, Vialard J, Shenoi SSC, Shankar D, Durand F, Ethé C, Madec G (2007) Simulated seasonal and interannual variability of mixed layer heat budget in the northern Indian Ocean. J Clim 20:3249–3268

    Article  Google Scholar 

  • Dee DP et al (2011) The ERA-interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137:553–597. doi:10.1002/qj.828

    Article  Google Scholar 

  • Du Y, Xie S-P, Huang G, Hu K (2009) Role of air–sea interaction in the long persistence of El Niño-induced North Indian Ocean warming. J Clim 22:2023–2038. doi:10.1175/2008JCLI2590.1

    Article  Google Scholar 

  • Duvel JP (2012) New topics and advances, oceans and air-sea interaction. In: Lau WKM, Waliser DE (eds) Intraseasonal variability in the atmosphere-ocean climate system, 2nd edn. Springer, New York, pp 513–530

    Google Scholar 

  • Duvel JP, Vialard J (2007) Indo-Pacific Sea surface temperature perturbations associated with intraseasonal oscillations of the tropical convection. J Clim 20:3056–3082

    Article  Google Scholar 

  • Fairall CW, Bradley EF, Hare JE, Grachev AA, Edson JB (2003) Bulk parameterization on air-sea fluxes: updates and verification for the COARE algorithm. J Clim 16:571–591

    Article  Google Scholar 

  • Foltz GR, Vialard J, Praveen Kumar B, McPhaden MJ (2010) Seasonal mixed layer heat balance of the southwestern tropical Indian Ocean. J Clim 23:947–965

    Article  Google Scholar 

  • Graham NE, Barnett TP (1987) Sea surface temperature, surface wind divergence, and convection over the tropical oceans. Science 238:657–659

    Article  Google Scholar 

  • Halkides DJ, Lee T (2011) Mechanisms controlling seasonal mixed layer temperature and salinity in the southwestern tropical Indian Ocean. Dyn Atmos Oceans 51:77–93

    Article  Google Scholar 

  • Harrison DE, Vecchi GA (2001) January 1999 Indian Ocean cooling event. Geophys Res Lett 28:3717–3720

    Article  Google Scholar 

  • Hermes JC, Reason CJC (2008) Annual cycle of the South Indian Ocean (Seychelles–Chagos) thermocline ridge in a regional ocean model. J Geophys Res 113:C04035. doi:10.1029/2007JC004363

    Google Scholar 

  • Hong C–C, Lu M–M, Kanamitsu M (2008) Temporal and spatial characteristics of positive and negative Indian Ocean dipole with and without ENSO. J Geophys Res 113:D08107. doi:10.1029/2007JD009151

    Google Scholar 

  • Huffman GJ, Adler RF, Arkin P, Chang A, Ferraro R, Gruber A, Janowiak J, McNab A, Rudolf B, Shneider U (1997) The global precipitation climatology project (GPCP) combined precipitation dataset. Bull Am Meteorol Soc 78:5–20

    Article  Google Scholar 

  • Izumo T, de Boyer Montégut C, Luo J–J, Behera SK, Masson S, Yamagata T (2008) The role of the western Arabian Sea upwelling in Indian monsoon rainfall variability. J Clim 21:5603–5623

    Article  Google Scholar 

  • Jayakumar A, Vialard J, Lengaigne M, Gnanaseelan C, McCreary JP, Praveen Kumar B (2011) Processes controlling the surface temperature signature of the Madden–Julian Oscillation in the thermocline ridge of the Indian Ocean. Clim Dyn. doi:10.1007/s00382-010-0953-5

    Google Scholar 

  • Jerlov NG (1968) Optical oceanography. Elsevier Press, Amsterdam, p 194

  • Jury M, Pathack B, Parker B (1999) Climatic determinants and statistical prediction of tropical cyclone days in the southwest Indian Ocean. J Clim 12:1738–1755

    Article  Google Scholar 

  • Keerthi MG, Lengaigne M, Vialard J, de Boyer Montégut C, Muraleedharan PM (2013) Interannual variability of the Tropical Indian Ocean mixed layer depth. Clim Dyn 40:743–759

    Article  Google Scholar 

  • Klein SA, Soden BJ, Lau NC (1999) Remote sea surface temperature variations during ENSO: evidence for a tropical atmospheric bridge. J Clim 12:917–932

    Article  Google Scholar 

  • Large WG, Yeager SG (2004) Diurnal to decadal global forcing for ocean and sea-ice models: the data sets and flux climatologies. NCAR/TN-460 STR, 111 pp

  • Lau NC, Nath MJ (2000) Impact of ENSO on the variability of the Asian-Australian monsoons as simulated in GCM experiments. J Clim 13:4287–4309

    Article  Google Scholar 

  • Lengaigne M, Haussman U, Madec G, Menkes C, Vialard J (2012) Mechanisms controlling warm water volume interannual variations in the equatorial Pacific: diabatic versus adiabatic processes. Clim Dyn 38:1031–1046

    Article  Google Scholar 

  • Locarnini RA, Mishonov AV, Antonov JI, Boyer TP, Garcia HE, Baranova OK, Zweng MM, Johnson DR (2010) World ocean atlas 2009, volume 1: temperature. In: Levitus S (ed) NOAA atlas NESDIS 68. US. Government Printing Office, Washington, DC, p 184

  • Lumpkin R, Garzoli SL (2005) Near-surface circulation in the Tropical Atlantic Ocean. Deep Sea Res I 52(3):495–518. doi:10.1016/j.dsr.2004.09.001

    Article  Google Scholar 

  • Madden RA, Julian PR (1972) Description of global-scale circulation cells in the tropics with a 40–50 day period. J Atmos Sci 29:3138–3158

    Google Scholar 

  • Madec G (2008) NEMO, the Ocean engine. Technical report, notes de l’IPSL (27), ISSN 1288 1619, Université P. et M. Curie, 193 pp

  • Masumoto Y, Meyers G (1998) Forced Rossby waves in the southern tropical Indian Ocean. J Geophys Res 103:27589–27602

    Article  Google Scholar 

  • McCreary JP Jr, Kundu PK, Molinari RL (1993) A numerical investigation of dynamics, thermodynamics and mixed-layer processes in the Indian Ocean. Prog Oceanogr 31:181–244

    Article  Google Scholar 

  • McPhaden MJ, Nagura M (2013) Indian ocean dipole interpreted in terms of recharge oscillator theory. Clim Dyn. doi:10.1007/s00382-013-1765-1

  • McPhaden MJ, Ando K, Bourlès B, Freitag HP, Lumpkin R, Masumoto Y, Murty VSN, Nobre P, Ravichandran M, Vialard J, Vousden D, Yu W (2010) The global tropical moored buoy array. In: Hall J, Harrison DE, Stammer D (eds) Proceedings of the “OceanObs’09: Sustained Ocean Observations and Information for Society” conference, vol 2. ESA Publication WPP-306, Venice, Italy. 21–25 September 2009

  • Meyers G, McIntosh P, Pigot L, Pook M (2007) The years of El Niño, La Niña, and interactions with the tropical Indian Ocean. J Clim 20:2872–2880

    Article  Google Scholar 

  • Murtugudde R, McCreary JP, Busalacchi AJ (2000) Oceanic processes associated with anomalous events in the Indian Ocean with relevance to 1997–1998. J Geophys Res 105:3295–3306

    Article  Google Scholar 

  • Nidheesh AG, Lengaigne M, Unnikrishnan AS, Vialard J (2012) Decadal and long-term sea level variability in the tropical Indo-Pacific. Clim Dyn. doi:10.1007/s00382-012-1463-4

    Google Scholar 

  • Praveen Kumar B, Vialard J, Lengaigne M, Murty VSN, McPhaden MJ (2012) TropFlux: air-sea fluxes for the global tropical oceans—description and evaluation against observations. Clim Dyn 38:1521–1543

    Article  Google Scholar 

  • Praveen Kumar B, Vialard J, Lengaigne M, Murty VSN, McPhaden MJ, Cronin M, Pinsard F, Gopala Reddy K (2013) TropFlux wind stresses over the tropical oceans: evaluation and comparison with other products. Clim Dyn. doi:10.1007/s00382-012-1455-4

    Google Scholar 

  • Rao SA, Behera SK (2005) Subsurface influence on SST in the tropical Indian Ocean: structure and interannual variability. Dyn Atmos Oceans 39:103–135

    Article  Google Scholar 

  • Saji NH, Goswami BN, Vinayachandran PN, Yamagata T (1999) A dipole mode in the tropical Indian Ocean. Nature 401:360–363

    Google Scholar 

  • Saji NH, Xie S-P, Tam C-Y (2006) Satellite observations of intense intraseasonal cooling events in the tropical South Indian Ocean. Geophys Res Lett 33:L14704. doi:10.1029/2006GL026525

    Article  Google Scholar 

  • Santoso A, Gupta AS, England MH (2010) Genesis of Indian Ocean mixed layer temperature anomalies: a heat budget analysis. J Clim 23:5375–5403

    Article  Google Scholar 

  • Schott F, McCreary JP (2001) The monsoon circulation of the Indian Ocean. Prog Oceanogr 51:1–123

    Article  Google Scholar 

  • Tozuka T, Yokoi T, Yamagata T (2010) A modeling study of interannual variations of the Seychelles Dome. J Geophys Res 115:C04005. doi:10.1029/2009JC005547

    Google Scholar 

  • Treguier AM, Barnier B, de Miranda AP, Molines JM, Grima N, Lmbard M, Madec G, Messaager C, Teynaud T, Michel S (2001) An eddy permitting model of the Atlantic circulation: evaluating open boundary conditions. J Geophy Res 106. 10.1029/2000JC000376

  • Trenary LL, Han W (2012) Intraseasonal-to-interannual variability of South Indian Ocean sea level and thermocline: remote versus local forcing. J Phys Oceanogr 32:602–627

    Article  Google Scholar 

  • Uppala SM et al (2005) The ERA-40 re-analysis. Q J R Meteorol Soc 131:2961–3012

    Article  Google Scholar 

  • Vecchi GA, Harrison DE (2004) Interannual Indian rainfall variability and Indian Ocean sea surface temperature anomalies. In: Wang C, Xie S-P, Carton JA (eds) Earth climate: the ocean-atmosphere interaction. American geophysical union, geophysical monograph, vol 147. Washington, DC, pp 247–260

    Google Scholar 

  • Vialard J, Delecluse P (1998) An OGCM study for the TOGA decade. Part I : role of salinity in the physics of the western pacific fresh pool. J Phys Oceanogr 28:1071–1088

    Article  Google Scholar 

  • Vialard J, Menkes C, Boulanger J-P, Delecluse P, Guilyardi E, McPhaden MJ, Madec G (2001) Oceanic mechanisms driving the SST during the 1997–1998 El Niño. J Phys Oceanogr 31:1649–1675

    Article  Google Scholar 

  • Vialard J, Foltz G, McPhaden M, Duvel J-P, de Boyer Montégut C (2008) Strong Indian Ocean sea surface temperature signals associated with the Madden–Julian Oscillation in late 2007 and early 2008. Geophys Res Lett 35:L19608. doi:10.1029/2008GL035238

    Article  Google Scholar 

  • Vialard J, Duvel J-P, McPhaden M, Bouruet-Aubertot P, Ward B, Key E, Bourras D, Weller R, Minnett P, Weill A, Cassou C, Eymard L, Fristedt T, Basdevant C, Dandoneau Y, Duteil O, Izumo T, de Boyer Monte′gut C, Masson S, Marsac F, Menkes C, Kennan S (2009a) Cirene: air sea interactions in the Seychelles–Chagos thermocline ridge region. Bull Am Meteorol Soc 90:45–61

    Article  Google Scholar 

  • Vialard J, Shenoi SSC, McCreary JP, Shankar D, Durand F, Fernando V, Shetye SR (2009b) Intraseasonal response of Northern Indian Ocean coastal waveguide to the Madden–Julian Oscillation. Geophys Res Lett 36:L14605. doi:10.1029/2008GL037010

    Article  Google Scholar 

  • Vialard J, Drushka K, Bellenger H, Lengaigne M, Pous S, Duvel J-P (2013) Understanding Madden–Julian-induced sea surface temperature variations in the North Western Australian Basin. Clim Dyn. doi:10.1007/s00382-012-1541-7

  • Webster PJ, Moore AM, Loschnigg JP, Leben RR (1999) Coupled ocean atmosphere dynamics in the Indian Ocean during 1997-98. Nature 401:356–360

    Article  Google Scholar 

  • Wu R, Kirtman BP, Krishnamurthy V (2008) An asymmetric mode of tropical Indian Ocean rainfall variability in boreal spring. J Geophys Res 113:D05104. doi:10.1029/2007JD009316

    Google Scholar 

  • Xie P, Arkin PA (1997) Global precipitation: a 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull Am Meteorol Soc 78:2539–2558

    Article  Google Scholar 

  • Xie S-P, Annamalai H, Schott FA, McCreary JP (2002) Structure and mechanisms of south Indian climate variability. J Clim 9:840–858

    Article  Google Scholar 

  • Xie S-P, Hu K, Hafner J, Du Y, Huang G, Tokinaga H (2009) Indian Ocean capacitor effect on Indo-western Pacific climate during the summer following El Nino. J Clim 22:730–747

    Article  Google Scholar 

  • Yamagata T, Behera SK, Luo J–J, Masson S, Jury M, Rao SA (2004) Coupled ocean atmosphere variability in the tropical Indian Ocean, in earth climate: the ocean-atmosphere interaction. In: Wang C, Xie S-P, Carton JA (eds) Geophysical monograph series, vol 147. AGU, Washington, DC, pp 189–212

    Google Scholar 

  • Yokoi T, Tozuka T (2009) Seasonal variation of the Seychelles Dome simulated in the CMIP3 models. J Phys Oceanogr 39:449–457

    Article  Google Scholar 

  • Yokoi T, Tozuka T, Yamagata T (2008) Seasonal variation of the Seychelles Dome. J Clim 21:3740–3754

    Article  Google Scholar 

  • Yokoi T, Tozuka T, Yamagata T (2012) Seasonal and interannual variations of the SST above the Seychelles Dome. J Clim 25:800–814

    Article  Google Scholar 

  • Yu W, Xiang B, Liu L, Liu N (2005) Understanding the origins of interannual thermocline variations in the tropical Indian Ocean. Geophys Res Lett 32:L24706. doi:10.1029/2005GL024327

    Article  Google Scholar 

  • Zhang C (2005) Madden–Julian Oscillation. Rev Geophys 43:RG2003. doi:10.1029/2004RG000158

    Google Scholar 

  • Zhang YC, Rossow WB, Lacis AA, Oinas V, Mishchenko MI (2004) Calculation of radiative fluxes from the surface to top of atmosphere based on ISCCP and other global data sets: refinments of the radiative transfer model and the input data. J Geophys Res 109:D19105. doi:10.1029/2003JD004457

    Article  Google Scholar 

Download references

Acknowledgments

B. Praveen Kumar did this work while at CSIR-National Institute of Oceanography (CSIR-NIO, Goa, India), with a research grant from the Council of Scientific and Industrial Research (CSIR, Govt. of India). Institut de Recherche pour le Développement (IRD, France) provided him a “BEST” grant to support a one-year visit to Laboratoire d'Océanographie Expérimentation et Approches Numériques (LOCEAN, Paris). Jérôme Vialard and Matthieu Lengaigne are funded by Institut de Recherche pour le Développement (IRD). Matthieu Lengaigne provided his contribution to this paper while visiting the CSIR-National Institute of Oceanography (CSIR-NIO) in Goa, India. Anne-Charlotte Peter ran the lower resolution global experiment that we used in this study. Model experiments were performed using HPC resources from GENCI-IDRIS (Grant 2010-011140). We thank the OSCAR project office for providing Oscar currents data and the National Oceanographic Data Center (NODC) from National Oceanic and Atmospheric Administration (NOAA) for providing the World Ocean Atlas dataset. TropFlux data is developed as a research collaboration between CSIR-National Institute of Oceanography (CSIR-NIO, India), ESSO-Indian National Centre for Ocean Information Services (ESSO-INCOIS) and Laboratoire d'Océanographie Expérimentation et Approches Numériques (LOCEAN, Paris), and downloaded from http://www.locean-ipsl.upmc.fr/tropflux/. We thank three anonymous reviewers who provided constructive comments on an initial version of the manuscript, and the editor for a quick review process. This is INCOIS contribution number 163, and PMEL contribution number 4108.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Praveen Kumar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Praveen Kumar, B., Vialard, J., Lengaigne, M. et al. Processes of interannual mixed layer temperature variability in the thermocline ridge of the Indian Ocean. Clim Dyn 43, 2377–2397 (2014). https://doi.org/10.1007/s00382-014-2059-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-014-2059-y

Keywords

Navigation