Skip to main content
Log in

Interdecadal variations of the South Asian summer monsoon circulation variability and the associated sea surface temperatures on interannual scales

  • Original Paper
  • Published:
Advances in Atmospheric Sciences Aims and scope Submit manuscript

Abstract

We investigate the interannual variability of the South Asian summer monsoon (SASM) circulation, which has experienced a significant interdecadal change since 2000. This change is primarily influenced by sea surface temperatures (SSTs) in the tropical Pacific and North Atlantic oceans. During the pre-2000 period examined in this study (1979–99), the SASM is negatively correlated with eastern Pacific SSTs (the canonical ENSO mode) and positively correlated with the negative phase of the North Atlantic SST tripole (NAT). During the post-2000 period (2000–14), the SASM is negatively correlated with central Pacific SSTs and positively correlated with the positive phase of the NAT pattern. The associated Pacific SSTs change from the eastern to central region, leading to the rising (subsiding) branch of the Walker circulation moving westwards to the Maritime Continent in the latter period, which can impact the interannual variability of the SASM through modulating the wind field in the troposphere. In addition to Pacific SSTs, the NAT SSTs can propagate energy from the North Atlantic to the South Asian High (SAH) region through the wave activity flux, and then further impact the SASM via the SAH.

Because the SASM is intimately related with precipitation over the Asian region, we briefly discuss the features of the precipitation patterns associated with the SASM during the two periods. The westward shifting Walker circulation leads to the shrinking and weakened anomalous westerlies of the SASM in the lower level, inducing the Maritime Continent rainfall location to move westwards and more moisture to arrive in southern China from the Pacific Ocean in the latter period.

摘要

本文考察了南亚夏季风环流的年际变率特征,发现其在2000年前后发生了显著的年代际转变.该转变主要受热带太平洋和北大西洋海表温度的影响.2000年前(1979‒1999),南亚夏季风指数与东太平洋海温呈显著负相关,与负位相大西洋三极子型海温(负‒正‒负)呈显著正相关关系.2000年后(2000‒2014),南亚夏季风环流与中太平洋海温呈显著负相关,与正位相大西洋三极子型海温呈显著正相关.相关海温异常由东太平洋移至中太平洋区域,导致沃克环流的上升(下沉)支在后一时段西移到海洋性大陆附近,从而通过调节对流层上下层风场影响南亚夏季风的年际变率大小.此外,除了太平洋海温异常外,北大西洋三极子型海温异常亦可通过波列传播将能量由北大西洋输送至南亚高压区域,进而通过南亚高压调制南亚夏季风环流的变化.

由于南亚夏季风环流与亚洲季风区夏季降水有着紧密联系,因此,本文简要讨论了两个时段南亚夏季风环流影响相关降水场的变化特征.西移的沃克环流使得低层南亚夏季风环流的西风西缩减弱,从而导致海洋性大陆降水位置在后一时段西移,使得来自太平洋的更多水汽能到达中国南方.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adler, R. F., and Coauthors, 2003: The version-2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979 Present). Journal of Hydrometeorology, 4, 1147–1167, doi: 10.1175/1525-7541(2003)004<1147:TVGPCP>2. 0.CO;2.

    Article  Google Scholar 

  • Ashok, K., Z. Y. Guan, N. H. Saji, and T. Yamagata, 2004: Individual and combined influences of ENSO and the Indian Ocean dipole on the Indian summer monsoon. J. Climate, 17, 3141–3155, doi: 10.1175/1520-0442(2004)017<3141:IACIOE>2. 0.CO;2.

    Article  Google Scholar 

  • Bond, N. A., J. E. Overland, M. Spillane, and P. Stabeno, 2003: Recent shifts in the state of the North Pacific. Geophys. Res. Lett., 30, 2183, doi: 10.1029/2003GL018597.

    Article  Google Scholar 

  • Chan, J. C. L., and W. Zhou, 2005: PDO, ENSO and the early summer monsoon rainfall over south China. Geophys. Res. Lett., 32, L08810, doi: 10.1029/2004GL022015.

    Google Scholar 

  • Chang, C.-P., P. Harr, and J. H. Ju, 2001: Possible roles of Atlantic circulations on the weakening Indian monsoon rainfall–ENSO relationship. J. Climate, 14, 2376–2380, doi: 10.1175/1520-0442(2001)014<2376:PROACO>2.0.CO;2.

    Article  Google Scholar 

  • Cummins, P. F., and H. J. Freeland, 2007: Variability of the North Pacific Current and its bifurcation. Progress in Oceanography, 75(2), 253–265, doi: 10.1016/j.pocean.2007.08.006.

    Article  Google Scholar 

  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553–597, doi: 10.1002/qj.828.

    Article  Google Scholar 

  • Di Lorenzo, E., and Coauthors, 2008: North Pacific Gyre Oscillation links ocean climate and ecosystem change. Geophys. Res. Lett., 35, L08607, doi: 10.1029/2007GL032838.

    Article  Google Scholar 

  • Di Lorenzo, E., K. M. Cobb, J. C. Furtado, N. Schneider, B. T. Anderson, A. Bracco, M. A. Alexander, and D. J. Vimont, 2010: Central Pacific El Ni˜no and decadal climate change in the North Pacific Ocean. Nature Geoscience, 3, 762–765, doi: 10.1038/ngeo984.

    Article  Google Scholar 

  • Ding, Y. H., Z. Y. Wang, and Y. Sun, 2008: Inter-decadal variation of the summer precipitation in East China and its association with decreasing Asian summer monsoon. Part I: Observed evidences. International Journal of Climatology, 28, 1139–1161, doi: 10.1002/joc.1615.

    Article  Google Scholar 

  • Douglass, E., D. Roemmich, and D. Stammer, 2006: Interannual variability in northeast Pacific circulation. J. Geophys. Res., 111(C4), C04001, doi: 10.1029/2005JC003015.

    Article  Google Scholar 

  • Furtado, J. C., E. Di Lorenzo, B. T. Anderson, and N. Schneider, 2012: Linkages between the north pacific oscillation and central tropical pacific SSTs at low frequencies. Climate Dyn., 39, 2833–2846, doi: 10.1007/s00382-011-1245-4.

    Article  Google Scholar 

  • Gao, Y., H. J. Wang, and S. L. Li, 2013: Influences of the Atlantic Ocean on the summer precipitation of the southeastern Tibetan Plateau. J. Geophys. Res., 118(9), 3534–3544, doi: 10.1002/jgrd.50290.

    Google Scholar 

  • Goswami, B. N., and P. K. Xavier, 2005: ENSO control on the south Asian monsoon through the length of the rainy season. Geophys. Res. Lett., 32, L18717, doi: 10.1029/2005GL 023216.

    Google Scholar 

  • Goswami, B. N., 2006: The Asian monsoon: Interdecadal variability. The Asian Monsoon, B. Wang, Ed., Springer, 295–328, doi: 10.1007/3-540-37722-07.

    Chapter  Google Scholar 

  • Goswami, B. N., M. S. Madhusoodanan, C. P. Neema, and D. Sengupta, 2006: A physical mechanism for North Atlantic SST influence on the Indian summer monsoon. Geophys. Res. Lett., 33, L02706, doi: 10.1029/2005GL024803.

    Google Scholar 

  • Harris, I., P. D. Jones, T. J. Osborn, and D. H. Lister, 2014: Updated high-resolution grids of monthly climatic observationsthe CRU TS3.10 Dataset. International Journal of Climatology, 34, 623–642, doi: 10.1002/joc.3711.

    Article  Google Scholar 

  • Huffman, G. J., R. F. Adler, D. T. Bolvin, and G. J. Gu, 2009: Improving the global precipitation record: GPCP Version 2.1. Geophys. Res. Lett., 36, L17808, doi: 10.1029/2009GL 040000.

    Article  Google Scholar 

  • Ju, J. H., and J. Slingo, 1995: The Asian summer monsoon and ENSO. Quart. J. Roy. Meteor. Soc., 121, 1133–1168, doi: 10.1002/qj.49712152509.

    Article  Google Scholar 

  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year reanalysis project. Bull. Amer. Meteor. Soc., 77, 437–472, doi: 10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    Article  Google Scholar 

  • Kanamitsu, M., W. Ebisuzaki, J. Woollen, S.-K. Yang, J. J. Hnilo, M. Fiorino, and G. L. Potter, 2002: NCEP–DOE AMIP-II reanalysis (R-2). Bull. Amer. Meteor. Soc., 83, 1631–1643, doi: 10.1175/BAMS-83-11-1631.

    Article  Google Scholar 

  • Kinter, J. L., M. J. Fennessy, V. Krishnamurthy, and L. Marx, 2004: An evaluation of the apparent interdecadal shift in the tropical divergent circulation in the NCEP NCAR reanalysis. J. Climate, 17, 349–361, doi: 10.1175/1520-0442(2004)017 <0349:AEOTAI>2.0.CO;2.

    Article  Google Scholar 

  • Kothawale, D. R., A. A. Munot, and H. P. Borgaonkar, 2008: Temperature variability over the Indian ocean and its relationship with Indian summer monsoon rainfall. Theor. Appl. Climatol., 92, 31–45, doi: 10.1007/s00704-006-0291-z.

    Article  Google Scholar 

  • Krishnamurthy, L., and V. Krishnamurthy, 2013: Influence of PDO on South Asian summer monsoon and monsoon–ENSO relation. Climate Dyn., 42, 2397–2410, doi: 10.1007/s00382-013-1856-z.

    Article  Google Scholar 

  • Krishnamurthy, L., and V. Krishnamurthy, 2014: Decadal scale oscillations and trend in the Indian monsoon rainfall. Climate Dyn., 43, 319–331, doi: 10.1007/s00382-013-1870-1.

    Article  Google Scholar 

  • Krishnamurthy, L., and V. Krishnamurthy, 2016a: Decadal and interannual variability of the Indian Ocean SST. Climate Dyn., 46, 57–70, doi: 10.1007/s00382-015-2568-3.

    Article  Google Scholar 

  • Krishnamurthy, L., and V. Krishnamurthy, 2016b: Teleconnections of Indian monsoon rainfall with AMO and Atlantic tripole. Climate Dyn., 46, 2269–2285, doi: 10.1007/s00382-015-2701-3.

    Article  Google Scholar 

  • Krishnamurthy, L., and V. Krishnamurthy, 2017: Indian monsoon’s relation with the decadal part of PDO in observations and NCAR CCSM4. Int. J. Climatol., 37, 1824–1833, doi: 10.1002/joc.4815.

    Article  Google Scholar 

  • Krishnamurthy, V., and B. N. Goswami, 2000: Indian monsoon–ENSO relationship on interdecadal timescale. J. Climate, 13, 579–595, doi: 10.1175/1520-0442(2000)013<0579: IMEROI>2.0.CO;2.

    Article  Google Scholar 

  • Kucharski, F., A. Bracco, J. H. Yoo, and F. Molteni, 2008: Atlantic forced component of the Indian monsoon interannual variability. Geophys. Res. Lett., 35, L04706, doi: 10.1029/2007 GL033037.

    Article  Google Scholar 

  • Kucharski, F., A. Bracco, J. H. Yoo, and F. Molteni, 2010: Lowfrequency variability of the Indian Monsoon-ENSO relation and the Tropical Atlantic: The “weakening” of the 1980s and 1990s. J. Climate, 20(16), 4255–4266, doi: 10.1175/JCLI 4254.1.

    Article  Google Scholar 

  • Kulkarni, A., 2012: Weakening of Indian summer monsoon rainfall in warming environment. Theor. Appl. Climatol., 109(3–4), 447–459, doi: 10.1007/s00704-012-0591-4.

    Article  Google Scholar 

  • Kumar, K. K., B. Rajagopalan, and M. A. Cane, 1999: On the weakening relationship between the Indian monsoon and ENSO. Science, 284, 2156–2159, doi: 10.1126/science.284. 5423.2156.

    Article  Google Scholar 

  • Lepage, Y., 1971: A combination of Wilcoxon’s and Ansari-Bradley’s statistics. Biometrika, 58, 213–217, doi: 10.1093/biomet/58.1.213.

    Article  Google Scholar 

  • Li, S. L., J. Perlwitz, X.W. Quan, and M. P. Hoerling, 2008: Modelling the influence of North Atlantic multidecadal warmth on the Indian summer rainfall. Geophys. Res. Lett., 35, L05804, doi: 10.1029/2007GL032901.

    Google Scholar 

  • Lienert, F., and F. J. Doblas-Reyes, 2013: Decadal prediction of interannual tropical and North Pacific sea surface temperature. J. Geophys. Res., 118(12), 5913–5922, doi: 10.1002/jgrd.50469.

    Google Scholar 

  • Ma, S. M., and T. J. Zhou, 2016: Robust strengthening and westward shift of the tropical Pacific Walker circulation during 1979-2012: A comparison of 7 sets of reanalysis data and 26 CMIP5 models. J. Climate, 29, 3097–3118, doi: 10.1175/JCLI-D-15-0398.1.

    Article  Google Scholar 

  • Mantua, N. J., and S. R. Hare, 2002: The Pacific decadal oscillation. Journal of Oceanography, 58, 35–44, doi: 10.1023/A:1015820616384.

    Article  Google Scholar 

  • Meehl, G. A., 1987: The annual cycle and interannual variability in the tropical Pacific and Indian Ocean regions. Mon. Wea. Rev., 115, 27–50, doi: 10.1175/1520-0493(1987)115<0027: TACAIV>2.0.CO;2.

    Article  Google Scholar 

  • Meehl, G. A., and Coauthors, 2009: Decadal prediction. Bull. Amer. Meteor. Soc., 90, 1467–1485, doi: 10.1175/2009BAMS 2778.1.

    Article  Google Scholar 

  • Meehl, G. A., A. X. Hu, and C. Tebaldi, 2010: Decadal prediction in the Pacific region. J. Climate, 23, 2959–2973, doi: 10.1175/2010JCLI3296.1.

    Article  Google Scholar 

  • Mishra, V., B. V. Smoliak, D. P. Lettenmaier, and J. M. Wallace, 2012: A prominent pattern of year-to-year variability in Indian Summer Monsoon Rainfall. Proceedings of the National Academy of Sciences of the United States of America, 109(19), 7213–7217, doi: 10.1073/pnas.1119150109.

    Article  Google Scholar 

  • Moron, V., and A. W. Robertson, 2014: Interannual variability of Indian summer monsoon rainfall onset date at local scale. International Journal of Climatology, 34(4), 1050–1061, doi: 10.1002/joc.3745.

    Article  Google Scholar 

  • Nitta, T., and S. Yamada, 1989: Recent warming of tropical sea surface temperature and its relationship to the Northern Hemisphere circulation. J. Meteor. Soc. Japan, 67, 375–383, doi: 10.2151/jmsj1965.67.3375.

    Article  Google Scholar 

  • Normand, C., 1953: Monsoon seasonal forecasting. Quart. J. Roy. Meteor. Soc., 79, 463–473, doi: 10.1002/qj.49707934202.

    Article  Google Scholar 

  • Rajeevan, M., and L. Sridhar, 2008: Interannual relationship between Atlantic sea surface temperature anomalies and Indian summer monsoon. Geophys. Res. Lett., 35(21), L21704, doi: 10.1029/2008GL036025.

    Article  Google Scholar 

  • Rajeevan, M., C. K. Unnikrishnan, and B. Preethi, 2012: Evaluation of the ENSEMBLES multi-model seasonal forecasts of Indian summer monsoon variability. Climate Dyn., 38(11–12), 1–23, doi: 10.1007/s00382-011-1250-7.

    Google Scholar 

  • Robock, A., M. Q. Mu, K. Vinnikov, and D. Robinson, 2003: Land surface conditions over Eurasia and Indian summer monsoon rainfall. J. Geophys. Res., 108(D4), 4131, doi: 10.1029/2002JD002286.

    Article  Google Scholar 

  • Shukla, J., and D. A. Paolino, 1983: The Southern oscillation and long-range forecasting of the summer monsoon rainfall over India. Mon. Wea. Rev., 111, 1830–1837, doi: 10.1175/1520-0493(1983)111<1830:TSOALR>2.0.CO;2.

    Article  Google Scholar 

  • Smith, T. M., R. W. Reynolds, T. C. Peterson, and J. Lawrimore, 2008: Improvements to NOAA’s historical merged land–ocean surface temperature analysis (1880-2006). J. Climate, 21, 2283–2296, doi: 10.1175/2007JCLI2100.1.

    Article  Google Scholar 

  • Srivastava, A. K., O. P. Srijith, S. R. Kshirsagar, and K. Srivastava, 2015: Has modulation of Indian summer monsoon rainfall by sea surface temperature of the equatorial Pacific Ocean, weakened in recent years?. Climate Dyn., 45(7–8), 2237–2254, doi: 10.1007/s00382-015-2470-z.

    Article  Google Scholar 

  • Tao, S. Y., and L. X. Chen, 1987: A review of recent research on the East Asian summer monsoon. China, Monsoon Meteorology, C. P. Chang, and T. N. Chang, Eds., Oxford University Press, 60–92.

    Google Scholar 

  • Torrence, C., and G. P. Compo, 1998: A practical guide to wavelet analysis. Bull. Amer. Meteor. Soc., 79, 61–78, doi: 10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2.

    Article  Google Scholar 

  • Wang, T., H. J. Wang, O. H. Otterå, Y. Q. Gao, L. L. Suo, T. Furevik, and L. Yu, 2013: Anthropogenic agent implicated as a prime driver of shift in precipitation in eastern China in the late 1970s. Atmospheric Chemistry and Physics, 13, 12433–12450, doi: 10.5194/acp-13-12433-2013.

    Article  Google Scholar 

  • Webster, P. J., and T. N. Palmer, 1997: The past and the future of El Ni˜no. Nature, 390, 562–564, doi: 10.1038/37499.

    Article  Google Scholar 

  • Webster, P. J., and S. Yang, 1992: Monsoon and ENSO: Selectively interactive systems. Quart. J. Roy. Meteor. Soc., 118, 877–926, doi: 10.1002/qj.49711850705.

    Article  Google Scholar 

  • Wei, W., R. H. Zhang, M. Wen, B.-J. Kim and J.-C. Nam, 2015: Interannual variation of the South Asian High and Its relation with Indian and East Asian summer monsoon rainfall. J. Climate, 28(7), 2623–2634, doi: 10.1175/JCLI-D-14-00454.1.

    Article  Google Scholar 

  • Wu, J., and X. J. Gao, 2013: A gridded daily observation dataset over China region and comparison with the other datasets. Chinese Journal of Geophysics, 56, 1102–1111, doi: 10.6038/cjg20130406. (in Chinese)

    Google Scholar 

  • Wu, J., B.-T. Zhou, and Y. Xu, 2015: Response of precipitation and its extremes over China to warming: CMIP5 simulation and projection. Chinese Journal of Geophysics, 58, 461–473, doi: 10.1002/cjg2.20187.

    Article  Google Scholar 

  • Wu, R. G., 2016: Possible roles of regional SST anomalies in long-term changes in the relationship between the Indian and Australian summer monsoon rainfall. Theor. Appl. Climatol., 124(3–4), 663–677, doi: 10.1007/s00704-015-1443-9.

    Article  Google Scholar 

  • Xavier, P. K., C. Marzin, and B. N. Goswami, 2007: An objective definition of the Indian summer monsoon season and a new perspective on the ENSO–monsoon relationship. Quart. J. Roy. Meteor. Soc., 133(624), 749–764, doi: 10.1002/qj.45.

    Article  Google Scholar 

  • Yeh, S.-W, and B. P. Kirtman, 2009: Internal atmospheric variability and interannual-to-decadal ENSO variability in a CGCM. J. Climate, 22, 2335–2355, doi: 10.1175/2008JCLI2240.1.

    Article  Google Scholar 

  • Zhang, Y. S., and T. Li, 2008: Influence of the sea surface temperature in the Indian Ocean on the in-phase transition between the South Asian and North Australian summer monsoons. Terrestrial, Atmospheric and Oceanic Sciences, 19, 321–329, doi: 10.3319/TAO.2008.19.3.321(A).

    Article  Google Scholar 

  • Zhou, B. T., Y. Xu, J. Wu, S. Y. Dong, and Y. Shi, 2016: Changes in temperature and precipitation extreme indices over China: Analysis of a high-resolution grid dataset. International Journal of Climatology, 36, 1051–1066, doi: 10.1002/joc.4400.

    Article  Google Scholar 

  • Zhu, Y. L., 2012: Variations of the summer Somali and Australia cross-equatorial flows and the implications for the Asian summer monsoon. Adv. Atmos. Sci., 29, 509–518, doi: 10.1007/s00376-011-1120-6.

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Natural Science Foundation of China (Grant Nos. 41505070 and 41421004) and the CAS-PKU Joint Research Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ya Gao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, Y., Wang, H. & Chen, D. Interdecadal variations of the South Asian summer monsoon circulation variability and the associated sea surface temperatures on interannual scales. Adv. Atmos. Sci. 34, 816–832 (2017). https://doi.org/10.1007/s00376-017-6246-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00376-017-6246-8

Key words

关键词

Navigation