Skip to main content
Log in

The role of LTR retrotransposons in plant genetic engineering: how to control their transposition in the genome

  • Review
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Key message

We briefly discuss that the similarity of LTR retrotransposons to retroviruses is a great opportunity for the development of a genetic engineering tool that exploits intragenic elements in the plant genome for plant genetic improvement.

Abstract

Long terminal repeat (LTR) retrotransposons are very similar to retroviruses but do not have the property of being infectious. While spreading between its host cells, a retrovirus inserts a DNA copy of its genome into the cells. The ability of retroviruses to cause infection with genome integration allows genes to be delivered to cells and tissues. Retrovirus vectors are, however, only specific to animals and insects, and, thus, are not relevant to plant genetic engineering. However, the similarity of LTR retrotransposons to retroviruses is an opportunity to explore the former as a tool for genetic engineering. Although recent long-read sequencing technologies have advanced the knowledge about transposable elements (TEs), the integration of TEs is still unable either to control them or to direct them to specific genomic locations. The use of existing intragenic elements to achieve the desired genome composition is better than using artificial constructs like vectors, but it is not yet clear how to control the process. Moreover, most LTR retrotransposons are inactive and unable to produce complete proteins. They are also highly mutable. In addition, it is impossible to find a full active copy of a LTR retrotransposon out of thousands of its own copies. Theoretically, if these elements were directly controlled and turned on or off using certain epigenetic mechanisms (inducing by stress or infection), LTR retrotransposons could be a great opportunity to develop a genetic engineering tool using intragenic elements in the plant genome. In this review, the recent developments in uncovering the nature of LTR retrotransposons and the possibility of using these intragenic elements as a tool for plant genetic engineering are briefly discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Alzohairy AM, Sabir JSM, Gyulai G, Younis RAA, Jansen RK, Bahieldin A (2014) Environmental stress activation of plant long-terminal repeat retrotransposons. Funct Plant Biol 41:557–567

    Article  CAS  Google Scholar 

  • Barbeau B, Mesnard J-M (2011) Making sense out of antisense transcription in human T-cell lymphotropic viruses (HTLVs). Viruses 3:456–468

    Article  CAS  Google Scholar 

  • Baum C, Schambach A, Bohne J, Galla M (2006) Retrovirus vectors: toward the Plentivirus? Mol Ther 13:1050–1063

    Article  CAS  Google Scholar 

  • Belyayev A, Kalendar R, Brodsky L, Nevo E, Schulman AH, Raskina O (2010) Transposable elements in a marginal plant population: temporal fluctuations provide new insights into genome evolution of wild diploid wheat. Mob DNA 1:6

    Article  Google Scholar 

  • Bourque G, Burns KH, Gehring M, Gorbunova V, Seluanov A, Hammell M, Imbeault M, Izsvák Z, Levin HL, Macfarlan TS, Mager DL, Feschotte C (2018) Ten things you should know about transposable elements. Genome Biol 19:199

    Article  CAS  Google Scholar 

  • Butelli E, Licciardello C, Zhang Y, Liu J, Mackay S, Bailey P, Reforgiato-Recupero G, Martin C (2012) Retrotransposons control fruit-specific, cold-dependent accumulation of anthocyanins in blood oranges. Plant Cell 24:1242–1255

    Article  CAS  Google Scholar 

  • Buttler CA, Chuong EB (2022) Emerging roles for endogenous retroviruses in immune epigenetic regulation. Immunol Rev 305:165–178

    Article  CAS  Google Scholar 

  • Casacuberta JM, Grandbastien M-A (1993) Characterisation of LTR sequences involved in the protoplast specific expression of the tobacco Tnt1 retrotransposon. Nucleic Acids Res 21:2087–2093

    Article  CAS  Google Scholar 

  • Cavrak VV, Lettner N, Jamge S, Kosarewicz A, Bayer LM, Mittelsten Scheid O (2014) How a retrotransposon exploits the plant’s heat stress response for its activation. PLoS Genet 10:e1004115

    Article  Google Scholar 

  • Chang Y-H, Keegan RM, Prazak L, Dubnau J (2019) Cellular labeling of endogenous retrovirus replication (CLEVR) reveals de novo insertions of the Gypsy retrotransposable element in cell culture and in both neurons and glial cells of aging fruit flies. PLoS Biol 17:e3000278

    Article  CAS  Google Scholar 

  • Cheng C, Daigen M, Hirochika H (2006) Epigenetic regulation of the rice retrotransposon Tos17. Mol Genet Genom 276:378–390

    Article  CAS  Google Scholar 

  • Cheng X, Zhang D, Cheng Z, Keller B, Ling HQ (2009) A new family of Ty1-copia-like retrotransposons originated in the tomato genome by a recent horizontal transfer event. Genetics 181:1183–1193

    Article  CAS  Google Scholar 

  • Cho J, Paszkowski J (2017) Regulation of rice root development by a retrotransposon acting as a microRNA sponge. Elife 6:e30038

    Article  Google Scholar 

  • Courtial B, Feuerbach F, Eberhard S, Rohmer L, Chiapello H, Camilleri C, Lucas H (2001) Tnt1 transposition events are induced by in vitro transformation of Arabidopsis thaliana, and transposed copies integrate into genes. Mol Genet Genomics 265:32–42

    Article  CAS  Google Scholar 

  • D’erfurth I, Cosson V, Eschstruth A, Lucas H, Kondorosi A, Ratet P (2003) Efficient transposition of the Tnt1 tobacco retrotransposon in the model legume Medicago truncatula. Plant J 34:95–106

    Article  CAS  Google Scholar 

  • Diao X, Freeling M, Lisch D (2005) Horizontal transfer of a plant transposon. PLoS Biol 4:e5

    Article  Google Scholar 

  • Feng Q, Zhang Y, Hao P, Wang S, Fu G, Huang Y et al (2002) Sequence and analysis of rice chromosome 4. Nature 420:316–320

    Article  CAS  Google Scholar 

  • Finnegan EJ, Lawrence GJ, Dennis ES, Ellis JG (1993) Behaviour of modified Ac elements in flax callus and regenerated plants. Plant Mol Biol 22:625–633

    Article  CAS  Google Scholar 

  • Fischer SEJ, Ruvkun G (2020) Caenorhabditis elegans ADAR editing and the ERI-6/7/MOV10 RNAi pathway silence endogenous viral elements and LTR retrotransposons. Proc Natl Acad Sci USA 117:5987–5996

    Article  CAS  Google Scholar 

  • Fukai E, Umehara Y, Sato S, Endo M, Kouchi H, Hayashi M, Stougaard J, Hirochika H (2010) Derepression of the plant chromovirus LORE1 induces germline transposition in regenerated plants. PLoS Genet 6:e1000868

    Article  Google Scholar 

  • Galindo-Gonzalez L, Mhiri C, Deyholos MK, Grandbastien MA (2017) LTR-retrotransposons in plants: Engines of evolution. Gene 626:14–25

    Article  CAS  Google Scholar 

  • Grandbastien M-A, Spielmann A, Caboche M (1989) Tnt1, a mobile retroviral-like transposable element of tobacco isolated by plant cell genetics. Nature 337:376–380

    Article  CAS  Google Scholar 

  • Grandi N, Tramontano E (2018) HERV envelope proteins: Physiological role and pathogenic potential in cancer and autoimmunity. Front Microbiol 9:462

    Article  Google Scholar 

  • Havecker ER, Gao X, Voytas DF (2004) The diversity of LTR retrotransposons. Genome Biol 5:225

    Article  Google Scholar 

  • Hermant C, Torres-Padilla M-E (2021) TFs for TEs: the transcription factor repertoire of mammalian transposable elements. Genes Dev 35:22–39

    Article  CAS  Google Scholar 

  • Hernández-Pinzón I, Cifuentes M, Hénaff E, Santiago N, Espinás ML, Casacuberta JM (2012) The Tnt1 retrotransposon escapes silencing in tobacco, its natural host. PLoS ONE 7:e33816

    Article  Google Scholar 

  • Hirochika H (1993) Activation of tobacco retrotransposons during tissue culture. EMBO J 12:2521–2528

    Article  CAS  Google Scholar 

  • Hirochika H, Sugimoto K, Otsuki Y, Tsugawa H, Kanda M (1996) Retrotransposons of rice involved in mutations induced by tissue culture. Proc Natl Acad Sci USA 93:7783–7788

    Article  CAS  Google Scholar 

  • Hirochika H, Okamoto H, Kakutani T (2000) Silencing of retrotransposons in Arabidopsis and reactivation by the ddm1 mutation. Plant Cell 12:357–368

    Article  CAS  Google Scholar 

  • Hosid E, Brodsky L, Kalendar R, Raskina O, Belyayev A (2012) Diversity of long terminal repeat retrotransposon genome distribution in natural populations of the wild diploid wheat Aegilops speltoides. Genetics 190:263–274

    Article  CAS  Google Scholar 

  • Huang J, Wang Y, Liu W, Xu S, Fan Q, Jian S, Tang T (2017) EARE-1, a transcriptionally active Ty1/Copia-like retrotransposon has colonized the genome of Excoecaria agallocha through horizontal transfer. Front Plant Sci 8:45

    Google Scholar 

  • Jiang N, Bao Z, Temnykh S, Cheng Z, Jiang J, Wing RA, Mccouch SR, Wessler SR (2002) Dasheng: a recently amplified nonautonomous long terminal repeat element that is a major component of pericentromeric regions in rice. Genetics 161:1293–1305

    Article  CAS  Google Scholar 

  • Kakutani T, Jeddeloh JA, Flowers SK, Munakata K, Richards EJ (1996) Developmental abnormalities and epimutations associated with DNA hypomethylation mutations. Proc Natl Acad Sci USA 93:12406–12411

    Article  CAS  Google Scholar 

  • Kalendar R, Tanskanen J, Immonen S, Nevo E, Schulman Alan H (2000) Genome evolution of wild barley (Hordeum spontaneum) by BARE-1 retrotransposon dynamics in response to sharp microclimatic divergence. Proc Natl Acad Sci USA 97:6603–6607

    Article  CAS  Google Scholar 

  • Kumar A, Hirochika H (2001) Applications of retrotransposons as genetic tools in plant biology. Trends Plant Sci 6:127–134

    Article  CAS  Google Scholar 

  • Leblanc P, Desset S, Giorgi F, Taddei AR, Fausto AM, Mazzini M, Dastugue B, Vaury C (2000) Life cycle of an endogenous retrovirus, ZAM, in Drosophila melanogaster. J Virol 74:10658–10669

    Article  CAS  Google Scholar 

  • Lee S-I, Park K-C, Son J-H, Hwang Y-J, Lim K-B, Song Y-S, Kim J-H, Kim N-S (2013) Isolation and characterization of novel Ty1-copia-like retrotransposons from lily. Genome 56:495–503

    Article  CAS  Google Scholar 

  • Lee Y-S, Maple R, Dürr J, Dawson A, Tamim S, Del Genio C, Papareddy R, Luo A, Lamb JC, Amantia S (2021) A transposon surveillance mechanism that safeguards plant male fertility during stress. Nat Plants 7:34–41

    Article  CAS  Google Scholar 

  • Leigh F, Kalendar R, Lea V, Lee D, Donini P, Schulman AH (2003) Comparison of the utility of barley retrotransposon families for genetic analysis by molecular marker techniques. Mol Genet Genom 269:464–474

    Article  CAS  Google Scholar 

  • Lerat E, Fablet M, Modolo L, Lopez-Maestre H, Vieira C (2017) TEtools facilitates big data expression analysis of transposable elements and reveals an antagonism between their activity and that of piRNA genes. Nucleic Acids Res 45:e17

    Google Scholar 

  • Li C, Tang J, Hu Z, Wang J, Cao M (2020) A novel maize dwarf mutant generated by Ty1-copia LTR-retrotransposon insertion in Brachytic2 after spaceflight. Plant Cell Rep 39:1–16

    Article  Google Scholar 

  • Li F, Lee M, Esnault C, Wendover K, Guo Y, Atkins P, Zaratiegui M, Levin HL (2022) Identification of an integrase-independent pathway of retrotransposition. Sci Adv 8:eabm9390

    Article  CAS  Google Scholar 

  • Lisch D (2013) How important are transposons for plant evolution? Nat Rev Genet 14:49–61

    Article  CAS  Google Scholar 

  • Liu J-X, Liu J, Yang T-Y, Liu L-M, Qiu L-H, Gao Y-J, Duan W-X, Lei J-C, Liu H-J, Zhang R-H, He W-Z, Li S, Li Y-R, Wei R-C, Xiong F-Q (2022) Isolation and analysis of reverse transcriptase of Ty1-copia-like retrotransposons in sugarcane. Sugar Tech. https://doi.org/10.1007/s12355-021-01063-6

    Article  Google Scholar 

  • Luo Y, Tian D, Teo JCY, Ong KH, Yin Z (2020) Inactivation of retrotransposon Tos17Chr 7 in rice cultivar Nipponbare through CRISPR/Cas9-mediated gene editing. Plant Biotechnol 37:69–75

    Article  Google Scholar 

  • Madsen LH, Fukai E, Radutoiu S, Yost CK, Sandal N, Schauser L, Stougaard J (2005) LORE1, an active low-copy-number Ty3-Gypsy retrotransposon family in the model legume Lotus japonicus. Plant J 44:372–381

    Article  CAS  Google Scholar 

  • Marí-Ordóñez A, Marchais A, Etcheverry M, Martin A, Colot V, Voinnet O (2013) Reconstructing de novo silencing of an active plant retrotransposon. Nat Genet 45:1029–1039

    Article  Google Scholar 

  • Masuta Y, Nozawa K, Takagi H, Yaegashi H, Tanaka K, Ito T, Saito H, Kobayashi H, Matsunaga W, Masuda S (2017) Inducible transposition of a heat-activated retrotransposon in tissue culture. Plant Cell Physiol 58:375–384

    CAS  Google Scholar 

  • Melayah D, Bonnivard E, Chalhoub B, Audeon C, Grandbastien MA (2001) The mobility of the tobacco Tnt1 retrotransposon correlates with its transcriptional activation by fungal factors. Plant J 28:159–168

    Article  CAS  Google Scholar 

  • Mhiri C, Morel J-B, Vernhettes S, Casacuberta JM, Lucas H, Grandbastien M-A (1997) The promoter of the tobacco Tnt1 retrotransposon is induced by wounding and by abiotic stress. Plant Mol Biol 33:257–266

    Article  CAS  Google Scholar 

  • Mirouze M, Reinders J, Bucher E, Nishimura T, Schneeberger K, Ossowski S, Cao J, Weigel D, Paszkowski J, Mathieu O (2009) Selective epigenetic control of retrotransposition in Arabidopsis. Nature 461:427–430

    Article  CAS  Google Scholar 

  • Miyao A, Tanaka K, Murata K, Sawaki H, Takeda S, Abe K, Shinozuka Y, Onosato K, Hirochika H (2003) Target site specificity of the Tos17 retrotransposon shows a preference for insertion within genes and against insertion in retrotransposon-rich regions of the genome. Plant Cell 15:1771–1780

    Article  Google Scholar 

  • Ong-Abdullah M, Ordway JM, Jiang N, Ooi SE, Kok SY, Sarpan N, Azimi N, Hashim AT, Ishak Z, Rosli SK, Malike FA, Bakar NA, Marjuni M, Abdullah N, Yaakub Z, Amiruddin MD, Nookiah R, Singh R, Low ET, Chan KL, Azizi N, Smith SW, Bacher B, Budiman MA, Van Brunt A, Wischmeyer C, Beil M, Hogan M, Lakey N, Lim CC, Arulandoo X, Wong CK, Choo CN, Wong WC, Kwan YY, Alwee SS, Sambanthamurthi R, Martienssen RA (2015) Loss of Karma transposon methylation underlies the mantled somaclonal variant of oil palm. Nature 525:533–537

    Article  CAS  Google Scholar 

  • Orozco-Arias S, Isaza G, Guyot R (2019) Retrotransposons in plant genomes: structure, identification, and classification through bioinformatics and machine learning. Int J Mol Sci 20:3837

    Article  CAS  Google Scholar 

  • Orozco-Arias S, Candamil-Cortés MS, Jaimes PA, Piña JS, Tabares-Soto R, Guyot R, Isaza G (2021) K-mer-based machine learning method to classify LTR-retrotransposons in plant genomes. PeerJ 9:e11456–e11456

    Article  Google Scholar 

  • Pelisson A, Mejlumian L, Robert V, Terzian C, Bucheton A (2002) Drosophila germline invasion by the endogenous retrovirus Gypsy: involvement of the viral env gene. Insect Biochem Mol Biol 32:1249–1256

    Article  CAS  Google Scholar 

  • Peng Y, Zhang Y, Gui Y, An D, Liu J, Xu X, Li Q, Wang J, Wang W, Shi C (2019) Elimination of a retrotransposon for quenching genome instability in modern rice. Mol Plant 12:1395–1407

    Article  CAS  Google Scholar 

  • Picault N, Chaparro C, Piegu B, Stenger W, Formey D, Llauro C, Descombin J, Sabot F, Lasserre E, Meynard D (2009) Identification of an active LTR retrotransposon in rice. Plant J 58:754–765

    Article  CAS  Google Scholar 

  • Piontkivska H, Wales-Mcgrath B, Miyamoto M, Wayne ML (2021) ADAR editing in viruses: An evolutionary force to reckon with. Genome Biol Evol 13:evab240

    Article  CAS  Google Scholar 

  • Pouteau S, Huttner E, Grandbastien MA, Caboche M (1991) Specific expression of the tobacco Tnt1 retrotransposon in protoplasts. EMBO J 10:1911–1918

    Article  CAS  Google Scholar 

  • Quesneville H (2020) Twenty years of transposable element analysis in the Arabidopsis thaliana genome. Mob DNA 11:28

    Article  Google Scholar 

  • Rajput MK, Upadhyaya KC (2009) CARE1, a Ty3-Gypsy like LTR-retrotransposon in the food legume chickpea (Cicer arietinum L.). Genetica 136:429–437

    Article  CAS  Google Scholar 

  • Ramakrishnan M, Satish L, Kalendar R, Narayanan M, Kandasamy S, Sharma A, Emamverdian A, Wei Q, Zhou M (2021) The dynamism of transposon methylation for plant development and stress adaptation. Int J Mol Sci 22:11387

    Article  CAS  Google Scholar 

  • Ramakrishnan M, Satish L, Sharma A, Kurungara Vinod K, Emamverdian A, Zhou M, Wei Q (2022) Transposable elements in plants: recent advancements, tools and prospects. Plant Mol Biol Rep. https://doi.org/10.1007/s11105-022-01342-w

    Article  Google Scholar 

  • Roulin A, Piegu B, Wing RA, Panaud O (2008) Evidence of multiple horizontal transfers of the long terminal repeat retrotransposon RIRE1 within the genus Oryza. Plant J 53:950–959

    Article  CAS  Google Scholar 

  • Saika H, Mori A, Endo M, Toki S (2019) Targeted deletion of rice retrotransposon Tos17 via CRISPR/Cas9. Plant Cell Rep 38:455–458

    Article  CAS  Google Scholar 

  • Sato M, Kawabe T, Hosokawa M, Tatsuzawa F, Doi M (2011) Tissue culture-induced flower-color changes in Saintpaulia caused by excision of the transposon inserted in the flavonoid 3′, 5′ hydroxylase (F3′ 5′ H) promoter. Plant Cell Rep 30:929–939

    Article  CAS  Google Scholar 

  • Shastry KA, Sanjay HA (2020) Machine learning for bioinformatics. In: Srinivasa K, Siddesh G, Manisekhar S (eds) Statistical modelling and machine learning principles for bioinformatics techniques, tools, and applications Algorithms for intelligent systems. Springer Singapore, pp 25–39

    Google Scholar 

  • Shelke RG, Das AB (2015) Analysis of genetic diversity in 21 genotypes of Indian banana using RAPDs and IRAPs markers. Proc Natl Acad Sci India Sect B Biol Sci 85:1027–1038

    Article  CAS  Google Scholar 

  • Sinzelle L, Izsvák Z, Ivics Z (2009) Molecular domestication of transposable elements: From detrimental parasites to useful host genes. Cell Mol Life Sci 66:1073–1093

    Article  CAS  Google Scholar 

  • Steinbauerová V, Neumann P, Macas J (2008) Experimental evidence for splicing of intron-containing transcripts of plant LTR retrotransposon Ogre. Mol Genet Genom 280:427–436

    Article  Google Scholar 

  • Sultana T, Zamborlini A, Cristofari G, Lesage P (2017) Integration site selection by retroviruses and transposable elements in eukaryotes. Nat Rev Genet 18:292–308

    Article  CAS  Google Scholar 

  • Suoniemi A, Narvanto A, Schulman AH (1996) The BARE-1 retrotransposon is transcribed in barley from an LTR promoter active in transient assays. Plant Mol Biol 31:295–306

    Article  CAS  Google Scholar 

  • Takeda S, Sugimoto K, Otsuki H, Hirochika H (1998) Transcriptional activation of the tobacco retrotransposon Tto1 by wounding and methyl jasmonate. Plant Mol Biol 36:365–376

    Article  CAS  Google Scholar 

  • Takeda S, Sugimoto K, Otsuki H, Hirochika H (1999) A 13-bp cis-regulatory element in the LTR promoter of the tobacco retrotransposon Tto1 is involved in responsiveness to tissue culture, wounding, methyl jasmonate and fungal elicitors. Plant J 18:383–393

    Article  CAS  Google Scholar 

  • Tapia G, Verdugo I, Yañez M, Ahumada I, Theoduloz C, Cordero C, Poblete F, González E, Ruiz-Lara S (2005) Involvement of ethylene in stress-induced expression of the TLC1. 1 retrotransposon from Lycopersicon chilense Dun. Plant Physiol 138:2075–2086

    Article  CAS  Google Scholar 

  • Thieme M, Lanciano S, Balzergue S, Daccord N, Mirouze M, Bucher E (2017) Inhibition of RNA polymerase II allows controlled mobilisation of retrotransposons for plant breeding. Genome Biol 18:134–134

    Article  Google Scholar 

  • Tsukahara S, Kawabe A, Kobayashi A, Ito T, Aizu T, Shin-I T, Toyoda A, Fujiyama A, Tarutani Y, Kakutani T (2012) Centromere-targeted de novo integrations of an LTR retrotransposon of Arabidopsis lyrata. Genes Dev 26:705–713

    Article  CAS  Google Scholar 

  • Vicient CM, Casacuberta JM (2020) Additional ORFs in plant LTR-retrotransposons. Front Plant Sci 11:555

    Article  Google Scholar 

  • Vicient CM, Kalendar R, Anamthawat-Jónsson K, Suoniemi A, Schulman AH (2000) Structure, functionality, and evolution of the BARE-1 retrotransposon of barley. In: McDonald JF (ed) Transposable elements and genome evolution. Georgia genetics review 1, vol 1. Springer Netherlands, pp 53–63

    Google Scholar 

  • Vicient CM, JääSkeläInen MJ, Kalendar R, Schulman AH (2001) Active retrotransposons are a common feature of grass genomes. Plant Physiol 125:1283–1292

    Article  CAS  Google Scholar 

  • Yilmaz S, Marakli S, Gozukirmizi N (2014) BAGY2 retrotransposon analyses in barley calli cultures and regenerated plantlets. Biochem Genet 52:233–244

    Article  CAS  Google Scholar 

  • Zervudacki J, Yu A, Amesefe D, Wang J, Drouaud J, Navarro L, Deleris A (2018) Transcriptional control and exploitation of an immune-responsive family of plant retrotransposons. EMBO J 37:e98482

    Article  Google Scholar 

  • Zhang H, Lang Z, Zhu JK (2018) Dynamics and function of DNA methylation in plants. Nat Rev Mol Cell Biol 19:489–506

    Article  CAS  Google Scholar 

  • Zhao Y, Xu T, Shen C-Y, Xu G-H, Chen S-X, Song L-Z, Li M-J, Wang L-L, Zhu Y, Lv W-T (2014) Identification of a retroelement from the resurrection plant Boea hygrometrica that confers osmotic and alkaline tolerance in Arabidopsis thaliana. PLoS ONE 9:e98098

    Article  Google Scholar 

  • Zou J, Huss M, Abid A, Mohammadi P, Torkamani A, Telenti A (2018) A primer on deep learning in genomics. Nat Genet 51:12–18

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the University of Helsinki Language Centre, Finland for outstanding editing and proofreading of the manuscript. We sincerely thank the anonymous reviewers for their valuable time and insightful comments, which greatly improved the quality of the manuscript. We apologize to those whose original work(s) could not be included in this review owing to space limitations.

Funding

Preparation of this review was supported by a grant from the Jiangxi “Shuangqian” Programme (S2019DQKJ2030), the Qing Lan Project of Jiangsu Higher Education Institutions, the Natural Science Foundation for Distinguished Young Scholars of Nanjing Forestry University (JC2019004), the Project for Groundbreaking Achievements of Nanjing Forestry University (202211), a project funded by the Priority Academic Programme Development of Jiangsu Higher Education Institutions, and also the Science Committee of the Ministry of Education and Science of the Republic of Kazakhstan (OR11465424). The authors are also grateful for the support of Metasequoia Faculty Research Start-up Funding (grant number 163100028) at the Bamboo Research Institute, Nanjing Forestry University for the first author MR.

Author information

Authors and Affiliations

Authors

Contributions

MR, PKP and SM planned, designed and wrote the review. MR, SM, QW, RK and MZ outlined and edited the review. MR, PKP, RK and QW made the table and the images. MR, RK, QW, SM, AS, ZA, VS, and MZ edited and revised the review.

Corresponding authors

Correspondence to Ruslan Kalendar or Qiang Wei.

Ethics declarations

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Additional information

Communicated by Wusheng Liu.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramakrishnan, M., Papolu, P.K., Mullasseri, S. et al. The role of LTR retrotransposons in plant genetic engineering: how to control their transposition in the genome. Plant Cell Rep 42, 3–15 (2023). https://doi.org/10.1007/s00299-022-02945-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-022-02945-z

Keywords

Navigation