Skip to main content
Log in

Expression and functional analyses of a putative phenylcoumaran benzylic ether reductase in Arabidopsis thaliana

  • Original Article
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Key message

A candidate gene for phenylcoumaran benzylic ether reductase in Arabidopsis thaliana encodes a peptide with predicted functional activity and plays a crucial role in secondary metabolism.

Abstract

Phenylcoumaran benzylic ether reductase (PCBER) is thought to be an enzyme crucial in the biosynthesis of 8–5′-linked neolignans. Genes of the enzyme have been isolated and characterized in several plant species. In this study, we cloned cDNA and the 5′-untranslated region of one PCBER candidate gene (At4g39230, designated AtPCBER1) from Arabidopsis thaliana. At the amino acid level, AtPCBER1 shows high sequence identity (64–71 %) with PCBERs identified from other plant species. Expression analyses of AtPCBER1 by reverse transcriptase-polymerase chain reaction and histochemical analysis of transgenic plants harboring the 5′-untranslated region of AtPCBER1 linked with gus coding sequence indicate that expression is induced by wounding and is expressed in most tissues, including flower, stem, leaf, and root. Catalytic analysis of recombinant AtPCBER1 with neolignan and lignans in the presence of NADPH suggests that the protein can reduce not only the 8–5′-linked neolignan, dehydrodiconiferyl alcohol, but also 8–8′ linked lignans, pinoresinol, and lariciresinol, with lower activities. To investigate further, we performed metabolomic analyses of transgenic plants in which the target gene was up- or down-regulated. Our results indicate no significant effects of AtPCBER1 gene regulation on plant growth and development; however, levels of some secondary metabolites, including lignans, flavonoids, and glucosinolates, differ between wild-type and transgenic plants. Taken together, our findings indicate that AtPCBER1 encodes a polypeptide with PCBER activity and has a critical role in the biosynthesis of secondary metabolites in A. thaliana.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Afendi FM, Okada T, Yamazaki M, Hirai-Morita A, Nakamura Y, Nakamura K, Ikeda S, Takahashi H, Altaf-Ul-Amin M, Darusman L, Saito K, Kanaya S (2012) KNApSAcK family databases: integrated metabolite-plant species databases for multifaceted plant research. Plant Cell Physiol 53:e1. doi:10.1093/pcp/pcr165

    Article  PubMed  CAS  Google Scholar 

  • Attoumbre J, Hano C, Mesnard F, Lamblin F, Bensaddek L, Grandic SRL, Laine É, Fliniaux MA, Baltora-Rosset S (2005) Identification by NMR and accumulation of a neolignan, the dehydrodiconiferyl alcohol-4-β-d-glucoside, in Linum usitatissimum cell cultures. C R Chimie 9:420–425. doi:10.1016/j.crci.2005.06.012

    Article  CAS  Google Scholar 

  • Banerjee A, Chattopadhyay S (2010) Effect of over-expression of Linum usitatissimum pinoresinol lariciresinol reductase. (LuPLR) gene in transgenic Phyllanthus amarus. Plant Cell Tiss Organ Cult 103:315–323. doi:10.1007/s11240-010-9781-x

    Article  CAS  Google Scholar 

  • Bate N, Twell D (1998) Functional architecture of a late pollen promoter pollen-specific transcription is developmentally regulated by multiple stage-specific and co-dependent activator elements. Plant Mol Biol 37:859–869. doi:10.1023/A:1006095023050

    Article  PubMed  CAS  Google Scholar 

  • Bayindir Ü, Alfermann AW, Fuss E (2008) Hinokinin biosynthesis in Linum corymbulosum Reichenb. Plant J 55:810–820. doi:10.1111/j.1365-313X.2008.03558.x

    Article  PubMed  CAS  Google Scholar 

  • Binns AN, Chen RH, Wood HN, Lynn DG (1987) Cell-division promoting activity of naturally-occurring dehydrodiconiferyl glucosides—do cell-wall components control cell-division. Proc Natl Acad Sci USA 84:980–984. doi:10.1073/pnas.84.4.980

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Boerjan W, Polle A, Mijnsbrugge KV (2006) Role in lignification and growth for plant phenylcoumaran benzylic ether reductase. US patent application US 20060015967 A1

  • Böttcher C, von Roepenack-Lahaye E, Schmidt J, Schmotz C, Neumann S, Scheel D, Clemens S (2008) Metabolome analysis of biosynthetic mutants reveals a diversity of metabolic changes and allows identification of a large number of new compounds in Arabidopsis. Plant Physiol 147:2107–2120. doi:10.1104/pp.108.117754

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Brandalise M, Severino FE, Maluf MP, Maia IG (2009) The promoter of a gene encoding an isoflavone reductase-like protein in coffee (Coffea arabica) drives a stress-responsive expression in leaves. Plant Cell Rep 28:1699–1708. doi:10.1007/s00299-009-0769-0

    Article  PubMed  CAS  Google Scholar 

  • Cheng H, Li LL, Xu F, Wang Y, Yuan HH, Wu CH, Wang SB, Liao ZQ, Hua J, Wang YP, Cheng SY, Cao FL (2013) Expression patterns of an isoflavone reductase-like gene and its possible roles in secondary metabolism in Ginkgo biloba. Plant Cell Rep 32:637–650. doi:10.1007/s00299-013-1397-2

    Article  CAS  Google Scholar 

  • Davin LB, Wang HB, Crowell AL, Bedgar DL, Martin DM, Sarkanen S, Lewis NG (1997) Stereoselective bimolecular phenoxy radical coupling by an auxiliary (dirigent) protein without an active center. Science 275:362–366. doi:10.1126/science.275.5298.362

    Article  PubMed  CAS  Google Scholar 

  • Dillon SK, Nolan M, Li W, Bell C, Wu HX, Southerton SG (2010) Allelic variation in cell wall candidate genes affecting solid wood properties in natural populations and land races of Pinus radiate. Genetics 185:1477–1487. doi:10.1534/genetics.110.116582

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Dinkova-Kostova AT, Gang DR, Davin LB, Bedgar DL, Chu A, Lewis NG (1996) (+)-Pinoresinol/(+)-Lariciresinol reductase from Forsythia intermedia—protein purification, cDNA cloning, heterologous expression and comparison to isoflavone reductase. J Biol Chem 271:29473–29482

    Article  PubMed  CAS  Google Scholar 

  • Fujita M, Gang DR, Davin LB, Lewis NG (1999) Recombinant pinoresinol-lariciresinol reductases from Western Red Cedar (Thuja plicata) catalyze opposite enantiospecific conversions. J Biol Chem 274:618–627. doi:10.1074/jbc.274.2.618

    Article  PubMed  CAS  Google Scholar 

  • Gang DR, Dinkova-Kostova AT, Davin LB, Lewis NG (1997) Phylogenetic links in plant defense systems: lignans, isoflavonoids, and their reductases. Am Chem Soc Symp Ser 658:58–89

    CAS  Google Scholar 

  • Gang DR, Kasahara H, Xia ZQ, Mijnsbrugge KV, Bauw G, Boerjan W, Montagu MV, Davin LB, Lewis NG (1999) Evolution of plant defense mechanisms. Relationships of phenylcoumaran benzylic ether reductases to pinoresinol-lariciresinol and isoflavone reductases. J Biol Chem 274:7516–7527. doi:10.1074/jbc.274.11.7516

    Article  PubMed  CAS  Google Scholar 

  • Hemmati S, Schmidt TJ, Fuss E (2007) (+)-Pinoresinol/(−)-lariciresinol reductase from Linum perenne Himmelszelt involved in the biosynthesis of justicidin B. FEBS Lett 581:603–610. doi:10.1016/j.febslet.2007.01.018

    Article  PubMed  CAS  Google Scholar 

  • Higo K, Ugawa Y, Iwamoto M, Korenaga T (1999) Plant cis-acting regulatory DNA elements (PLACE) database: 1999. Nucleic Acids Res 27:297–300. doi:10.1093/nar/27.1.297

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Jimenez-Lopez JC, Kotchoni SO, Hernandez-Soriano MC, Gachomo EW, Alché JD (2013) Structural functionality, catalytic mechanism modeling and molecular allergenicity of phenylcoumaran benzylic ether reductase, an olive pollen (Ole e 12) allergen. J Comput Aided Mol Des 27:873–895. doi:10.1007/s10822-013-9686-y

    Article  PubMed  CAS  Google Scholar 

  • Kajita S, Hishiyama S, Tomimura Y, Katayama Y, Omori S (1997) Structural characterization of modified lignin in transgenic tobacco plants in which the activity of 4-Coumarate: coenzyme a ligase is depressed. Plant Physiol 114:871–879

    PubMed Central  PubMed  CAS  Google Scholar 

  • Karamloo F, Wangorsch A, Kasahara H, Davin LB, Haustein D, Lewis NG, Vieths S (2001) Phenylcoumaran benzylic ether and isoflavonoid reductases are a new class of cross-reactive allergens in birch pollen, fruits and vegetables. Eur J Biochem 268:5310–5320. doi:10.1046/j.0014-2956.2001.02463.x

    Article  PubMed  CAS  Google Scholar 

  • Kim SG, Kim ST, Wang YM, Kim SK, Lee CH, Kim KK, Kim JK, Lee SY, Kang KY (2010) Overexpression of rice isoflavone reductase-like gene (OsIRL) confers tolerance to reactive oxygen species. Physiol Plant 38:1–9. doi:10.1111/j.1399-3054.2009.01290.x

    Article  CAS  Google Scholar 

  • Kim WC, Kim JY, Ko JH, Kang H, Han KH (2014) Identification of direct targets of transcription factor MYB46 provides insights into the transcriptional regulation of secondary wall biosynthesis. Plant Mol Biol 85:589–599. doi:10.1007/s11103-014-0205-x

    Article  PubMed  CAS  Google Scholar 

  • Kwon M, Davin LB, Lewis NG (2001) In situ hybridization and immunolocalization of lignan reductases in woody tissues: implications for heartwood formation and other forms of vascular tissue preservation. Phytochem 57:899–914. doi:10.1016/S0031-9422(01)00108-X

    Article  CAS  Google Scholar 

  • Lee JH, Kim DH, Choi JH, Choi HJ, Ryu JH, Jeong JH, Park EJ, Kim SH, Kim SY (2012) Dehydrodiconiferyl alcohol isolated from cucurbita moschata shows anti-adipogenic and anti-lipogenic effects in 3T3-L1 cells and primary mouse embryonic fibroblasts. J Biol Chem 287:8839–8851. doi:10.1074/jbc.M111.263434

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Lescot M, Déhais P, Thijs G, Marchal K, Moreau Y, Van de Peer Y, Rouzé P, Rombauts S (2002) PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res 30:325–327. doi:10.1093/nar/30.1.325

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Morreel K, Saeys Y, Dima O, Lu FC, Van de Peer Y, Vanholme R, Ralph J, Vanholme B, Boerjana W (2014) Systematic structural characterization of metabolites in A. thaliana via candidate substrate-product pair networks. Plant Cell 26:929–945. doi:10.1105/tpc.113.122242

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Nakatsubo T, Mizutani M, Suzuki S, Hattori T, Umezawa T (2008) Characterization of A. thaliana pinoresinol reductase, a new type of enzyme involved in lignan biosynthesis. J Biol Chem 283:15550–15557. doi:10.1074/jbc.M801131200

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Niculaes C, Morreel K, Kim H, Lu FC, McKee LS, Ivens B, Haustraete J, Vanholme B, De Rycke R, Hertzberg M, Fromm J, Bulone V, Polle A, Ralph J, Boerjana W (2014) Phenylcoumaran benzylic ether reductase prevents accumulation of compounds formed under oxidative conditions in poplar xylem. Plant Cell 26:3775–3791. doi:10.1105/tpc.114.125260

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Orr JD, Lynn DG (1992) Biosynthesis of dehydrodiconiferyl alcohol glucosides: implications for the control of tobacco cell growth. Plant Physiol 98:343–352. doi:10.1104/pp.98.1.343

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Paiva NL, Edwards R, Sun YJ, Hrazdina G, Dixon RA (1991) Stress responses in alfalfa (Medicago sativa L.) 11. Molecular cloning and expression of alfalfa isoflavone reductase, a key enzyme of isoflavonoid phytoalexin biosynthesis. Plant Mol Biol 17:653–667. doi:10.1007/BF00037051

    Article  PubMed  CAS  Google Scholar 

  • Paiva NL, Sun YJ, Dixon RA, Vanetten HD, Hrazdina G (1994) molecular-cloning of isoflavone reductase from Pea (Pisum-Sativum L)—evidence for a 3r-isoflavanone intermediate in (+)-pisatin biosynthesis. Arch Biochem Biophys 312:501–510. doi: 10.1006/abbi.1994.1338

  • Ruprecht C, Mutwil M, Saxe F, Eder M, Nikoloski Z, Persson S (2011) Large-scale co-expression approach to dissect secondary cell wall formation across plant species. Front Plant Sci 2:23. doi:10.3389/fpls.2011.00023

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Saguez J, Attoumbre J, Giordanengo P, Baltora-Rosset S (2013) Biological activities of lignans and neolignans on the aphid Myzus persicae (Sulzer). Arthropod Plant Interact 7:225–233. doi:10.1007/s11829-012-9236-x

    Article  Google Scholar 

  • Sarry JE, Kuhn L, Ducruix C, Lafaye A, Junot C, Hugouvieux V, Jourdain A, Bastien O, Fievet JB, Vailhen D, Amekraz B, Moulin C, Ezan E, Garin J, Bourguignon J (2006) The early responses of Arabidopsis thaliana cells to cadmium exposure explored by protein and metabolite profiling analyses. Proteomics 6:2180–2198. doi:10.1002/pmic.200500543

    Article  PubMed  CAS  Google Scholar 

  • Shoji T, Winz R, Iwase T, Nakajima K, Yamada Y, Hashimoto T (2002) Expression patterns of two tobacco isoflavone reductase-like genes and their possible roles in secondary metabolism in tobacco. Plant Mol Biol 50:427–440. doi:10.1023/A:1019867732278

    Article  PubMed  CAS  Google Scholar 

  • Song LJ, Morrison JJ, Botting NP, Thornalley PJ (2005) Analysis of glucosinolates, isothiocyanates, and amine degradation products in vegetable extracts and blood plasma by LC–MS/MS. Anal Biochem 347:234–243. doi:10.1016/j.ab.2005.09.040

    Article  PubMed  CAS  Google Scholar 

  • Sumner LW, Amberg A, Barrett D, Beale MH, Beger R, Daykin CA, Fan TW-M, Fiehn O, Goodacre R, Griffin JL, Hankemeier T, Hardy N, Harnly J, Higashi R, Kopka J, Lane AN, Lindon JC, Marriott P, Nicholls AW, Reily D, Thaden JJ, Viant MR (2007) Proposed minimum reporting standards for chemical analysis. Metabolmics 3:211–221. doi:10.1007/s11306-007-0082-2

    Article  CAS  Google Scholar 

  • Suzuki S, Umezawa T (2007) Biosynthesis of lignans and norlignans. J Wood Sci 53:273–284. doi:10.1007/s10086-007-0892-x

    Article  CAS  Google Scholar 

  • Tamura M, Tsuji Y, Kusunose T, Okazawa A, Kamimura N, Morid T, Nakabayashi R, Hishiyama S, Fukuhara Y, Hara H, Sato-Izawa K, Muranaka T, Saito K, Katayama Y, Fukuda M, Masai E, Kajita S (2014) Successful expression of a novel bacterial gene for pinoresinol reductase and its effect on lignan biosynthesis in transgenic Arabidopsis thaliana. Appl Microbiol Biotechnol 98:8165–8177. doi:10.1007/s00253-014-5934-x

    Article  PubMed  CAS  Google Scholar 

  • Tiemann K, Inze D, von Montagu M, Barz W (1991) Pterocarpan phytoalexin biosynthesis in elicitor-challenged chickpea (Cicer arietinum L.) cell cultures purification, characterization and cDNA cloning of NADPH: isoflavone oxidoreductase. Eur J Biochem 200:751–757. doi:10.1111/j.1432-1033.1991.tb16241.x

    Article  PubMed  CAS  Google Scholar 

  • Tohge T, Nishiyama Y, Hirai MY, Yano M, Nakajima J, Awazuhara M, Inoue E, Takahashi H, Goodenowe DB, Kitayama M, Noji M, Yamazaki M, Saito K (2005) Functional genomics by integrated analysis of metabolome and transcriptome of Arabidopsis plants over-expressing an MYB transcription factor. Plant J 42:218–235. doi:10.1111/j.1365-313X.2005.02371.x

    Article  PubMed  CAS  Google Scholar 

  • Umezawa T (2003) Diversity in lignan biosynthesis. Phytochem Rev 2:371–390. doi:10.1023/B:PHYT.0000045487.02836.32

    Article  CAS  Google Scholar 

  • Vander mijnsbrugge K, Beeckman H, De Rycke R, Van Montagu M, Engler G, Boerjan W (2000) phenylcoumaran benzylic ether reductase, a prominent xylem protein, is strongly associated with phenylpropanoid biosynthesis in lignifying cells. Planta 211:502–509. doi:10.1007/s004250000326

    Article  PubMed  CAS  Google Scholar 

  • von Heimendahl CBI, Schäfer KM, Eklund P, Sjöholm R, Schmidt TJ, Fuss E (2005) Pinoresinol–lariciresinol reductases with different stereospecificity from Linum album and Linum usitatissimum. Phytochem 66:1254–1263. doi:10.1016/j.phytochem.2005.04.026

    Article  CAS  Google Scholar 

  • Yonekura-Sakakibara K, Tohge T, Matsuda F, Nakabayashi R, Takayama H, Niida R, Watanabe-Takahashi A, Inoue E, Saito K (2008) Comprehensive flavonol profiling and transcriptome coexpression analysis leading to decoding gene–metabolite correlations in Arabidopsis. Plant Cell 20:2160–2176. doi:10.1105/tpc.108.058040

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Zhao Q, Zeng YN, Yin YB, Pu YQ, Jackson LA, Engle NL, Martin MZ, Tschaplinski TJ, Ding SY, Ragauskas AJ, Dixon RA (2014) Pinoresinol reductase 1 impacts lignin distribution during secondary cell wall biosynthesis in A. thaliana. Phytochem 112:170–178. doi:10.1016/j.phytochem.2014.07.008

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the Japan Science and Technology Agency (Advanced Low Carbon Technology Research and Development Program) and by Japan Society for the Promotion of Science (Japan Advanced Plant Science Network Program).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shinya Kajita.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by H. Ebinuma.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 382 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nuoendagula, Kamimura, N., Mori, T. et al. Expression and functional analyses of a putative phenylcoumaran benzylic ether reductase in Arabidopsis thaliana . Plant Cell Rep 35, 513–526 (2016). https://doi.org/10.1007/s00299-015-1899-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-015-1899-1

Keywords

Navigation