Skip to main content

Advertisement

Log in

Effect of over-expression of Linum usitatissimum PINORESINOL LARICIRESINOL REDUCTASE (LuPLR) gene in transgenic Phyllanthus amarus

  • Original Paper
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

Shoot tip explants of Phyllanthus amarus were cocultivated with Agrobacterium tumefaciens strain LBA 4404 carrying plasmid pCAMBIA 2301 harbouring genes coding for betaglucuronidase (gus), kanamycin (kan), and neomycin phosphotransferase II (nptII) along with a gene coding for Linum usitatissimum PINORESINOL LARICIRESINOL REDUCTASE (Lu-PLR). Transformed shoot tip explants were maintained in a Murashige and Skoog (MS) medium containing TDZ 1.54 mg l−1, kan 50 mg l−1 and cephotaxime 62.5 mg l−1. The optimum medium for regeneration of multiple shoots was MS supplemented with TDZ 1.54 mg l−1, kan 50 mg l−1. Efficient and effective rooting of plantlets was achieved by culturing the in vitro regenerated shoots on liquid ½ MS medium containing 0.7 mg l−1 indole 3-butyric acid (IBA) and 5 mg l−1 kan. Rooted plants were acclimatized in the mixtures of vermiculite and soil. The transformation of kan-resistant plantlets regenerated from shoot-tip explants was confirmed by GUS and polymerase chain reaction (PCR) analysis. Southern blot and reverse transcribed PCR (RT-PCR) analysis confirmed successful integration and expression of Lu-PLR gene. Quantitative analysis of phyllanthin performed on transgenic and wild plants using high-performance liquid chromatography (HPLC) revealed that transgenic lines contained higher phyllanthin content (0.3–0.81% w/w) than wild plants (0.09% w/w). The highest yield of phyllanthin was detected in transgenic lines was up to 1.16, 1.22 and 1.23 folds higher than that of wild plant. This report highlights the transgenic approach to enhance the contents of phyllanthin and hypophyllanthin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

AS:

Acetosyringone

BAP:

6, Benzylaminopurine

IBA:

Indole 4- butyric acid

LuPLR :

PLR gene from L. usitatissimum

Kan:

Kanamycin

MS:

Murashige and Skoog

nptII :

Neomycin phosphotransferase

PLR :

Pinoresinol Lariciresinol Reductase

TDZ:

Thiadizuron

X-Gluc:

5-bromo, 4-chloro, 3-indolyl, ß-d-glucuronide

References

  • Ayella AK, Trick HN, Wang W (2007) Enhanced lignan biosynthesis by over-expressing pinoresinol lariciresinol reductase in transgenic wheat. Molecular Nutr Food Res 51:1518–1526. doi:10.1002/mnfr.200700233

    CAS  Google Scholar 

  • Banerjee A, Chattopadhyay S (2009) Genetic transformation of a hepatoprotective plant, Phyllanthus amarus. In Vitro Cell Dev Biol-Plant 45:57–64. doi:10.1007/s11627-008-9160-z

    Google Scholar 

  • Bayindir U, Alfermann AW, Fuss E (2008) Hinokinin biosynthesis in Linum corymbulosum Reichenb. Plant J 55:810–820. doi:10.1111/j.1365-313X.2008.03558.x

    CAS  PubMed  Google Scholar 

  • Bhattacharyya R, Bhattacharyya S (2001) High frequency in vitro propagation of Phyllanthus amarus Schum & Thonn by shoot tip culture. Indian J Exp Biol 39:1184–1187

    CAS  PubMed  Google Scholar 

  • Calixto JB, Santos ARS, Filho VC, Yunes RA (1998) A review of the plants of the genus Phyllanthus: their chemistry, pharmacology and therapeutic potential. Med Res Rev 18:225–258. doi:1002/(SICI)1098-1128(199807)18:4<225:AIDMED2>3.0.CO;2-X

    CAS  PubMed  Google Scholar 

  • Capell T, Christou P (2004) Progress in plant metabolic engineering. Current Opin Biotech 15:148–154. doi:10.1016/jcopbio.2004.01.009

    CAS  Google Scholar 

  • Catapan E, Otuki MF, Viana AM (2000) In vitro culture of Phyllanthus caroliniensis (Euphorbiaceae). Plant Cell Tissue Org Cult 62:195–202. doi:10.1023/A:1006406806839

    CAS  Google Scholar 

  • Catapan E, Luís M, Silva BD, Moreno FN, Viana AM (2002) Micropropagation, callus and root culture of Phyllanthus urinaria (Euphorbiaceae). Plant Cell Tissue Org Cult 70:301–309. doi:10.1023/A:1016529110605

    CAS  Google Scholar 

  • Chirdchupunseree H, Pramyothin P (2010) Protective effect of phyllanthin in ethanol-treated primary culture of rat hepatocytes. J Ethnopharmacol 128:172–176. doi:10.1016/j.jep.2010.01.003

    CAS  PubMed  Google Scholar 

  • Christou P, McCabe DE, Martinell BJ, Swain WF (1990) Soyabean genetic engineering-commercial production of transgenic plants. Trends in Biotech 8:145–151. doi:10.1016/0167-7799(90)90160-y

    CAS  Google Scholar 

  • Das B, Goswami L, Ray S, Ghosh S, Bhattacharyya S, Das S, Lahiri Majumder A (2006) Agrobacterium -mediated Transformation of Brassica juncea with a Cyanobacterial (Synechocystis PCC6803) Delta-6 desaturase gene leads to production of gamma-linolenic acid. Plant Cell Tissue Org Cult 86:219–231. doi:10.1007/s11240-006-9111-5

    CAS  Google Scholar 

  • Dinkova-Kostova AT, Gang DR, Davin LB, Bedgar DI, Chu A, Lewis NG (1996) (+)-Pinoresinol/(+)-lariciresinol reductase from Forsythia intermedia: Protein purification, cDNA cloning, heterologous expression and comparison to isoflavone reductase. J Biol Chem 271:29473–29482. doi:10.1074/jbc.271.46.29473

    CAS  PubMed  Google Scholar 

  • Dutt M, Li ZT, Dhekney SA, Gray DJ (2007) Transgenic plants from shoot apical meristems of Vitis vinifera L. “Thompson seedless” via Agrobacterium-mediated transformation. Plant Cell Rep 26:2101–2110. doi:10.1007/s00299-007-0424-6

    CAS  PubMed  Google Scholar 

  • Fujita M, Gang DR, Davin LB, Lewis NG (1999) Recombinant pinoresinol-lariciresinol reductases from western red cedar (Thuja plicata) catalyze opposite enantiospecific conversions. J Biol Chem 274:618–627. doi:10.1074/jbc.274.2.618

    CAS  PubMed  Google Scholar 

  • Gang DR, Costa MA, Fujita M, Dinkova-Kostova AT, Wang HB, Burlat V, Martin W, Sarkanen S, Davin LB, Lewis NG (1999) Regiochemical control of monolignol radical coupling: a new paradigm for lignin and lignan biosynthesis. Chem Biol 6:143–151. doi:10.1016/S1074-5521(99)89006-1

    CAS  PubMed  Google Scholar 

  • Ghanti KS, Govindaraju B, Venugopal RB, Rao SR, Kaviraj SP, Jabeen FTZ, Barad A, Rao S (2004) High frequency shoot regeneration from Phyllanthus amarus Schum & Thonn. Ind J Biotechnol 3:103–107

    CAS  Google Scholar 

  • Hano C, Martin I, Fliniaux O, Legrand B, Gutierrez L, Arroo RRJ, Mesnard F, Lamblin F, Laine E (2006) Pinoresinol-lariciresinol reductase gene expression and secoisolariciresinol diglucosdie accumulation in developing flax (Linum usitatissimum seeds). Planta 224:1518–1526. doi:10.1007/s00425-005-0156-1

    Google Scholar 

  • Harish R, Shivanandappa T (2006) Antioxidant activity and hepatoprotective potential of Phyllanthus niruri. Food Chem 95:180–185. doi:10.1016/j.foodchem.2004.11.09

    CAS  Google Scholar 

  • Hemmati S, Schmidt TJ, Fuss E (2007) (+)-Pinoresinol/(+)-lariciresinol reductase from Linum perenne Himmelszelt involved in the biosynthesis of justicidin B. FEBS Lett 581:603–610. doi:10.1016/j.febslet.2007.01.018

    CAS  PubMed  Google Scholar 

  • Krithika R, Mohankumar R, Verma RJ, Shrivastav PS, Mohamad IJ, Gunasekaran P, Narasimhan S (2009) Isolation, characterization and antioxidative effect of phyllanthin against CCl4-induced toxicity in HepG2 cell line. Chemico-Biological Inter 181:351–358. doi:10.1016/j.cbi.2009.06.014

    CAS  Google Scholar 

  • Lee KH, Xiao Z (2003) Lignans in the treatment of cancer and other diseases. Phytoche Rev 2:341–362. doi:10.1023/B:PHYT.0000045495.59732.58

    CAS  Google Scholar 

  • Leite DF, Kassuya CA, Mazzuco TL, Silvestre A, de Melo LV, Rehder VL, Rumianek VM, Calixto JB (2006) The cytotoxic effect and the multidrug reversing action of lignans from Phyllanthus amarus. Planta Med 72:1353–1358. doi:10.1055/s-2006-951708

    CAS  PubMed  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Plant Physiol 15:473–497. doi:10.1111/j.1399-3054.1962.tb08052.x

    CAS  Google Scholar 

  • Notka F, Meier G, Wagner R (2004) Concerted inhibitory activities of Phyllanthus amarus on HIV replication in vitro and ex vivo. Antiviral Res 64:93–102. doi:10.1016/j.antiviral.2004.06.010

    CAS  PubMed  Google Scholar 

  • Petersen M, Alfermann AW (2001) The production of cytotoxic lignans by plant cell cultures. Appl Microb Biotechnol 55:135–142. doi:10.1007/s002530000510

    CAS  Google Scholar 

  • Sambrook J, Russel DW (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor laboratory Press, New York

    Google Scholar 

  • Satyavathi VV, Prasad V, Gita Lakshmi B, Lakshmi Sita G (2002) High efficiency transformation protocol for three Indian cotton varieties via Agrobacterium tumefaciens. Plant Sci 162:215–223. doi:10.1016/S0168-9452(01)00547-7

    CAS  Google Scholar 

  • Sticklen MB, Oraby H (2005) Shoot apical meristem: a sustainable explants for genetic transformation of cereal crops. In Vitro Cell Dev Plant 41:187–200. doi:10.1079/IVP2004616

    CAS  Google Scholar 

  • Tavya VS, Kim YH, Kagan IA, Dinkins RD, Kim K-H, Collins GB (2007) Increased α-tocopherol content in soyabean seed overexpressing the Perilla frustescens γ-tocopherol methyltransferase gene. Plant Cell Rep 26:61–70. doi:10.1007/s00299-006-0218-2

    Google Scholar 

  • Tripathi AK, Verma RK, Gupta AK, Gupta MM, Khanuja SPS (2006) Quantitative Determination of Phyllanthin and Hypophyllanthin in Phyllanthus Species by High-performance Thin Layer Chromatography. Phytochem Anal 17:394–397. doi:10.1002/pca.936

    CAS  PubMed  Google Scholar 

  • Umezawa T (2003) Diversity in lignin biosynthesis. Phytochem Rev 2:371–390. doi:10.1023/B:PHYT.0000045487.02836.32

    CAS  Google Scholar 

  • Umezawa T, Okunishi T, Shimada M (1997) Mechanisms of lignan biosynthesis. Annual Rep Interdiscipl Res Inst Environ Sci 16:65–71

    CAS  Google Scholar 

  • Venkateswaran PS, Millman I, Blumberg BS (1987) Effect of an extract from Phyllanthus niruri on hepatitis B Virus and woodchuck hepatitis viruses: in vitro and in vivo studies. Proc Natl Acad Sci USA 87:274–278. doi:10.1073/pnas.84.1.274

    Google Scholar 

  • Verpoorte R, Memelink J (2002) Engineering secondary metabolite production in plants. Current Opin Biotech 13:181–187. doi:10.1016/S0958-1669(02)00308-7

    CAS  Google Scholar 

  • Von Heimendahl CBI, Schäfer KM, Eklund P, Sjöholm R, Schmidt TJ, Fuss E (2005) Pinoresinol–lariciresinol reductases with different stereospecificity from Linum album and Linum usitatissimum. Phytochem 66:1254–1263. doi:10.1016/j.phytochem.2005.04.026

    Google Scholar 

Download references

Acknowledgments

This work received financial support from Council of Scientific and Industrial Research (CSIR) and Department of Biotechnology, Government of India. A.B. is thankful to CSIR, New Delhi for Senior Research Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sharmila Chattopadhyay.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Banerjee, A., Chattopadhyay, S. Effect of over-expression of Linum usitatissimum PINORESINOL LARICIRESINOL REDUCTASE (LuPLR) gene in transgenic Phyllanthus amarus . Plant Cell Tiss Organ Cult 103, 315–323 (2010). https://doi.org/10.1007/s11240-010-9781-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-010-9781-x

Keywords

Navigation