Skip to main content
Log in

Overexpression of geraniol 10-hydroxylase from Panax ginseng conferred enhanced resistance to Pseudomonas syringae in Arabidopsis

  • Original paper
  • Published:
Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Geraniol, the precursor of terpenoid indole alkaloids can be converted to the 10-hydroxy geraniol by the function of geraniol 10-hydroxylase. In our study, for the first time, a full-length cytochrome P450 monooxygenase (P450) geraniol 10-hydroxylase (PgCYP76C9) cDNA was isolated and characterized from Panax ginseng Meyer. The gene has an open reading frame (ORF) of 1503 base pairs and encodes a precursor protein of 501 amino acids residues. The calculated molecular mass of the protein is approximately 56.3 kDa with a predicated isoelectric point of 8.45. Amino acid identities between PgG10H and other P450s of the CYP76 family in the database had revealed that the deduced amino acid of PgG10H sharing a higher sequence homology with geraniol 10-hydroxylase-like proteins encoded by Cinchona calisaya and Lonicera japonica. We implemented a molecular modeling method to evaluate the possible interaction of geraniol with PgG10H active site. Our finding showed that the geraniol was the potential ligand for PgG10H in P. ginseng. Expression of PgG10H gene was tissue-regulated and showed high expression in 3-year-old ginseng flowers and roots. Expression of PgG10H was differentially induced in ginseng, not only during Pseudomonas syringae infection and wounding but also after exposure to methyl jasmonate and salt stress. Furthermore, overexpression of the newly identified ginseng geraniol 10-hydroxylase P450 gene in Arabidopsis caused terpenoid indole alkaloid dihydrositsirikine production and also conferred enhanced resistance to P. syringae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

cDNA:

Complementary DNA

CFP:

Cyan fluorescent protein

DMAPP:

Dimethylallyl diphosphate

G10H:

Geraniol 10-hydroxylase

GC-MS:

Gas chromatography mass spectrometry

GPP:

Geranyl diphosphate

GPS:

Geranyl diphosphate synthase

IPP:

Isopentenyl diphosphate

MJ:

Methyl jasmonate

MEP:

Methylerythritol phosphate

MVA:

Mevalonate

P450:

Cytochrome P450

qRT-PCR:

Quantitative reverse transcription polymerase chain reaction

TIA:

Terpenoid indole alkaloid

References

  • Artimo P, Jonnalagedda M, Arnold K, Baratin D, Csardi G, de Castro E, Duvaud S, Flegel V, Fortier A, Gasteiger E et al (2012) ExPASy: SIB bioinformatics resource portal. Nucleic Acids Res 40:W597–W603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bailey TL, Boden M, Buske FA, Frith M, Grant CE, Clementi L, Ren J, Li WW, Noble WS (2009) MEME SUITE: tools for motif discovery and searching. Nucleic Acids Res. doi:10.1093/nar/gkp335.

    Google Scholar 

  • Bechtold N, Pelletier G (1998) Agrobacterium-mediated transformation of adult Arabidopsis thaliana plants by vacuum infiltration. In: Martinez-Zapater JM, Salinas J (eds) Arabidopsis protocols. Humana Press, Totowa, pp 259–266

    Chapter  Google Scholar 

  • Briskin DP (2000) Medicinal plants and phytomedicines. Linking plant biochemistry and physiology to human health. Plant Physiol 124:507–514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burlat V, Oudin A, Courtois M, Rideau M, St-Pierre B (2004) Co-expression of three MEP pathway genes and geraniol 10-hydroxylase in internal phloem parenchyma of Catharanthus roseus implicates multicellular translocation of intermediates during the biosynthesis of monoterpene indole alkaloids and isoprenoid-derived primary metabolites. Plant J 38:131–141

    Article  CAS  PubMed  Google Scholar 

  • Chapple C (1998) Molecular-genetic analysis of plant cytochrome P450-dependent monooxygenases. Annu Rev Plant Physiol Plant Mol Biol 49:311–343

    Article  CAS  PubMed  Google Scholar 

  • Collu G, Unver N, Peltenburg-Looman AMG, van der Heijden R, Verpoorte R, Memelink J (2001) Geraniol 10-hydroxylase, a cytochrome P450 enzyme involved in terpenoid indole alkaloid biosynthesis. FEBS Lett 508:215–220

    Article  CAS  PubMed  Google Scholar 

  • Degtyarenko KN, Archakov AI (1993) Molecular evolution of P450 superfamily and P450-containing monooxygenase systems. FEBS Lett 332(1):1–8.

    Article  CAS  PubMed  Google Scholar 

  • Devi BSR, Kim YJ, Sathiyamoorthy S, Khorolragchaa A, Gayathri S, Parvin S, Yang DU, Selvi SK, Lee OR, Lee S, Yang DC (2011) Classification and characterization of cytochrome P450 genes from Panax ginseng C.A. Meyer. BioChemistry 76:1347–1359

    CAS  PubMed  Google Scholar 

  • Ducaiova Z, Sajko M, Mihalicova S, Repcak M (2016) Dynamics of accumulation of coumarin related compounds in leavesof Matricaria chamomilla after methyl jasmonate elicitation. Plant Growth Regul 79:81–94

    Article  CAS  Google Scholar 

  • Emanuelson O, Nielsen H, Brunak S, von Heijne G (2000) Predicting subcellular localization of proteins based on their N-terminal amino acid sequence. J Mol Biol 300:1005–1016

    Article  Google Scholar 

  • Geourjon C, Deleage G (1995) SOPMA: significant improvements in protein secondary structure prediction by consensus prediction from multiple alignments. Comput Appl Biosci 11(6):681–684.

    CAS  PubMed  Google Scholar 

  • Ghisalberti EL (1998) Biological and pharmacological activity of naturally occurring iridoids and secoiridoids. Phytomedicine 5(2):147–163

    Article  CAS  PubMed  Google Scholar 

  • Harrison TL, Zangerl AR, Schuler MA, Berenbaum MR (2001) Developmental variation in cytochrome P450 expression in Papilio polyxenes in response to xanthotoxin, a hostplant allelochemical. Arch Insect Biochem Physiol 48(4):179–189

    Article  CAS  PubMed  Google Scholar 

  • Hofer R, Dong L, André F, Ginglinger JF, Lugan R, Gavira C, Grec S, Lang G, Memelink J, Van Der Krol S, Bouwmeester H, Werck-Reichhart D (2013) Geraniol hydroxylase and hydroxygeraniol oxidase activities of the CYP76 family of cytochrome P450 enzymes and potential for engineering the early steps of the (seco)iridoid pathway. Metab Eng 20:221–232

    Article  CAS  PubMed  Google Scholar 

  • Hwang IS, Hwang BK (2010) The pepper 9-lipoxygenase gene CaLOX1 functions in defense and cell death responses to microbial pathogens. Plant Physiol 152:948–967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim DW, Kim DH, Choi DW, Kim DH, Jung GW (2002) Effects of ginseng alkaloid on the tension of rabbit corpus cavernosum. Korean J Androl 20(1):16–22

    Google Scholar 

  • Kyte J, Doolittle RF (1982) A simple method for displaying the hydropathic character of a protein. J Mol Biol 157(1):105–132

    Article  CAS  PubMed  Google Scholar 

  • Lee S, Chappell J (2008) Biochemical and genomic characterization of terpene synthases in Magnolia grandiflora. Plant Physiol 147:1017–1033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2∆∆Ct method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Madyastha KM, Meehan TD, Coscia CJ (1976) Characterization of a cytochrome P-450 dependent monoterpene hydroxylase from the higher plant Vinca rosea. BioChemistry 15:1097–1102

    Article  CAS  PubMed  Google Scholar 

  • Meehan TD, Coscia CJ (1973) Hydroxylation of geraniol and nerol by a monooxygenase from Vinca rosea. Biochem Biophys Res Commun 53:1043–1048

    Article  CAS  PubMed  Google Scholar 

  • Nelson DR, Kamataki T, Waxman DJ, Guengerich FP, Estabrook RW, Feyereisen R et al (1993). The P450 superfamily: update on new sequences, gene mapping, accession numbers, early trivial names of enzymes, and nomenclature. DNA Cell Biol 12(1):1–51.

    Article  CAS  PubMed  Google Scholar 

  • Osbourn EA (1996) Performed antimicrobial compounds and plant defense against fungal attack. Plant Cell 8:1821–1831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Otah D, Mizutani M (1998) Plant geraniol 10-hydroxylase and DNA coding Therefor. US patent 5, 753, 507.

  • Pan Q, Wang Q, Yuan F, Xing S, Zhao J, Choi YH, Verpoorte R, Tian Y, Wang G, Tang K (2012) Overexpression of ORCA3 and G10H in Catharanthus roseus plants regulated alkaloid biosynthesis and metabolism revealed by NMR-metabolomics. PLoS One 7(8):e43038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parvin S, Pulla RK, Kim YJ, Sathiyaraj G, Jung SK, Khorolragchaa A, In JG, Yang DC (2009) Identification and characterization of spermidine synthase gene from Panax ginseng. J Ginseng Res 33:249–255

    Article  CAS  Google Scholar 

  • Peebles CAM, Sander GW, Hughes EH, Peacock R, Shanks JV, San KY (2010) The expression of 1-deoxy-D-xylulose synthase and geraniol-10-hydroxylase or anthranilate synthase increases terpenoid indole alkaloid accumulation in Catharanthus roseus hairy roots. Metab Eng 13:234–240

    Article  PubMed  Google Scholar 

  • Quirino BF, Bent AF (2003) Deciphering host resistance and pathogen virulence: the Arabidopsis/Pseudomonas interaction as a model. Mol Plant Pathol 4:517–530

    Article  CAS  PubMed  Google Scholar 

  • Shibata S (2001) Chemistry and cancer preventing activities of ginseng saponins and some related triterpenoid compounds. J Korean Med Sci 16:S28–S37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sticher O (1998) Getting to the root of ginseng. Chemtech 28:26–32.

    CAS  Google Scholar 

  • St-Pierre B, Vazquez-Flota FA, De Luca V (1999) Multicellular compartmentation of Catharanthus roseus alkaloid biosynthesis predicts intercellular translocation of a pathway intermediate. Plant Cell 11:887–900

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun Y, Zhao SJ, Liang YL, Le W, Cao HJ (2013) Regulation and differential expression of protopanaxodiol synthase in Asian and American ginseng ginsenoside biosynthesis. Plant Growth Regul 71:207–217

    Article  CAS  Google Scholar 

  • Sung PH, Huang FC, Do YY, Huang PL (2011) Functional expression of geraniol 10-hydroxylase reveals its dual function in the biosynthesis of terpenoid and phenylpropanoid. J Agric Food Chem 59(9):4637–4643

    Article  CAS  PubMed  Google Scholar 

  • Wang JF, Liu YL, Cai YF, Zhang FF, Xia GM, Xiang FN (2010) Cloning and functional analysis of geraniol 10-hydroxylase, a cytochrome P450 from Swertia mussotii Franch. Biosci Biotechnol Biochem 74:1583–1590

    Article  CAS  PubMed  Google Scholar 

  • Wang CT, Liu H, Gao XS, Zhang HX (2010) Overexpression of G10H and ORCA3 in the hairy roots of Catharanthus roseus improves catharanthine production. Plant Cell Rep 29(8):887–894

    Article  CAS  PubMed  Google Scholar 

  • Werck-Reichhart D, Bak S, Paquette S (2002) Cytochrome P450. In: Somerville CR, Meyerowitz EM (eds) The Arabidopsis book. American Society of Plant Biologists, Rockville. doi:10.1199/Table0028.

    Google Scholar 

  • Yamazaki Y, Sudo H, Yamazaki M, Aimi N, Saito K (2003) Camptothecin biosynthetic genes in hairy roots of Ophiorrhiza pumila: cloning, characterization and differential expression in tissues and by stress compounds. Plant Cell Physiol 44(4):395–403

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by iPET (312064-03-1-HD040), Korea Institute of Planning and Evaluation for Technology in Food, Agriculture, Forestry and Fisheries, Republic of Korea.

Author contributions

S.R.D Balusamy designed the experiments and performed most of the experiments. S. Rahimi provided technical assistance and wrote the paper. K. Senthil implemented molecular modeling, and D.C. Yang supervised and Y.G. Cho contributed to the writing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deok-Chun Yang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Sri Renuka Devi Balusamy and Shadi Rahimi have contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PPT 3420 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Balusamy, S.R.D., Rahimi, S., Cho, YG. et al. Overexpression of geraniol 10-hydroxylase from Panax ginseng conferred enhanced resistance to Pseudomonas syringae in Arabidopsis. Plant Growth Regul 81, 305–316 (2017). https://doi.org/10.1007/s10725-016-0207-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10725-016-0207-6

Keywords

Navigation