Skip to main content

Advertisement

Log in

Influence of polyaniline conducting polymer on thermal properties of phase change material for thermal energy storage

  • ORIGINAL PAPER
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

This study focused on an important global issue containing both environmental pollution control and energy storage. Polyaniline has been utilized as a supporting material to load paraffin in order to form highly thermal conducting and shape-stable phase change material (PCM). Three different weight percentages (wt%), i.e., 10, 15, and 20 wt%, of polyaniline have been used to obtain shape-stable composite materials. The paraffin leakage of the prepared samples PPCM1, PPCM2, and PPCM3 has been examined by 500 thermal cycles in a hot air oven at 80 °C. Among three samples, the PPCM3 composite with 20 wt% of polyaniline in paraffin has shown excellent leakage-bearing properties with only ~ 0.06% leakage after 500 thermal cycles. Further, the chemical, structural, and morphological analyses of the PPCM3 composite have been carried out by FTIR, XRD, and FESEM. The thermal performance of the prepared sample has been studied by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) analysis, which revealed that the impregnation of polyaniline polymer has improved the thermal stability and thermal conductivity of paraffin with a small decrement in latent heat capacity of the PPCM3 composite. The latent heat of the composite decreased by 18.36% and thermal conductivity increased by ~ 65.45% for a 20 wt% concentration of polyaniline in paraffin with the maximum latent heat capacity. To check the thermal reliability of the formulated PPCM3 composite, the composite has been subjected to thermal cycling of 500 thermal cycles. With increased thermal conductivity, high latent heat capacity, good shape stability, excellent leakage-bearing capability, and improved thermal reliability, paraffin/polyaniline composite PCMs look promising for application in thermal energy storage areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data availability statement

The dataset used and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Aulakh JS, Joshi DP (2022) Development of paraffin-based shape-stable phase change material for thermal energy storage. Polym Sci A 64(4):308–317. https://doi.org/10.1134/S0965545X22200056

    Article  Google Scholar 

  2. Mahdi MT, Kara IH (2021) Thermophysical characteristic of nano-TiO2 paraffin wax composite material. J Mech Eng Res Dev 44(6):48–58

    Google Scholar 

  3. Deka PP, Ansu AK, Sharma RK, Tyagi VV, Sarı A (2020) Development and characterization of form-stable porous TiO2/tetradecanoic acid-based composite PCM with long-term stability as solar thermal energy storage material. Int J Energy Res 44(13):10044–10057. https://doi.org/10.1002/er.5615

    Article  CAS  Google Scholar 

  4. Ebadi S, Tasnim SH, Aliabadi AA, Mahmud S (2018) Geometry and nanoparticles loading effects on the bio-based nano-PCM filled cylindrical thermal energy storage system. Appl Therm Eng 141:724–740

    Article  CAS  Google Scholar 

  5. Yavari F, Fard HR, Pashayi K, Rafiee MA, Zamiri A, Yu Z, Ozisik R, Borca-Tasciuc T, Koratkar N (2011) Enhanced thermal conductivity in a nanostructured phase change composite due to low concentration graphene additives. J Phys Chem C 115(17):8753–8758. https://doi.org/10.1021/jp200838s

    Article  CAS  Google Scholar 

  6. Lin SC, Al-Kayiem HH (2016) Evaluation of copper nanoparticles–Paraffin wax compositions for solar thermal energy storage. Sol Energy 132:267–278. https://doi.org/10.1016/j.solener.2016.03.004

    Article  CAS  Google Scholar 

  7. Chintakrinda K, Weinstein RD, Fleischer AS (2011) A direct comparison of three different material enhancement methods on the transient thermal response of paraffin phase change material exposed to high heat fluxes. Int J Therm Sci 50:1639–1647. https://doi.org/10.1016/j.ijthermalsci.2011.04.005

    Article  CAS  Google Scholar 

  8. Ma X, Sheikholeslam M, Jafaryar M, Shafeee A, Nguyen-Thoi T, Li Z (2020) Solidification inside a clean energy storage unit utilizing phase change material with copper oxide nanoparticles. J Clean Prod 245:118888. https://doi.org/10.1016/j.jclepro.2019.118888

    Article  CAS  Google Scholar 

  9. Khapre A, Jaiswal A, Kumar S (2020) Utilizing the greenhouse effect as a source to produce renewable energy. Encyclopedia of Renewable and Sustainable Materials, vol 3. Elsevier, pp 835–843. https://doi.org/10.1016/B978-0-12-803581-8.11021-5

  10. Al-Waeli AHA, Sopian K, Chaichan MT, Kazem HA, Ibrahim A, Mat S, Ruslan MH (2017) Evaluation of the nanofluid and nano-PCM based photovoltaic thermal (PVT) system: an experimental study. Energy Convers Manag 151:693–708. https://doi.org/10.1016/j.enconman.2017.09.032

    Article  CAS  Google Scholar 

  11. Hou Y, Vidu R, Stroeve P (2011) Solar energy storage methods. Ind Eng Chem Res 50:8954–8964. https://doi.org/10.1021/ie2003413

    Article  CAS  Google Scholar 

  12. Zhang Q, Rao Y, Jiao Y, Li L, Li Y, Jin L (2017) Preparation and performance of composite building materials with phase change material for thermal storage. Energy Procedia 143:125–130. https://doi.org/10.1016/j.egypro.2017.12.659

    Article  CAS  Google Scholar 

  13. Silakhori M, Naghavi MS, Metselaar HSC, Mahlia TMI, Fauzi H, Mehrali M (2013) Accelerated thermal cycling test of microencapsulated paraffin wax/polyaniline made by simple preparation method for solar thermal energy storage. Materials 6(5):1608–1620. https://doi.org/10.3390/ma6051608

    Article  PubMed  PubMed Central  Google Scholar 

  14. Gawli Y, Banerjee A, Dhakras D, Deo M, Bulani D, Wadgaonkar P, Shelke M, Ogale S (2016) 3D Polyaniline architecture by concurrent inorganic and organic acid doping for superior and robust high rate supercapacitor performance. Sci Rep 6(1):1–10. https://doi.org/10.1038/srep21002

    Article  CAS  Google Scholar 

  15. Xie Y, Yang Y, Liu Y, Wang S, Guo X, Wang H, Cao D (2021) Paraffin/polyethylene/graphite composite phase change materials with enhanced thermal conductivity and leakage-proof. Adv Compos Hybrid Mater 4(3):543–551. https://doi.org/10.1007/s42114-021-00249-6

    Article  CAS  Google Scholar 

  16. Chen F, Wolcott M (2015) Polyethylene/paraffin binary composites for phase change material energy storage in building: a morphology, thermal properties, and paraffin leakage study. Sol Energy Mater Sol 137:79–85. https://doi.org/10.1016/j.solmat.2015.01.010

    Article  CAS  Google Scholar 

  17. Casado UM, Aranguren MI, Marcovich NE (2014) Preparation and characterization of conductive nanostructured particles based on polyaniline and cellulose nanofibers. Ultrasonicssonochemistry 21(5):1641–1648. https://doi.org/10.1016/j.ultsonch.2014.03.012

    Article  CAS  Google Scholar 

  18. Masoumi H, Mirfendereski SM (2019) Modification of physical and thermal characteristics of stearic acid as a phase change material using TiO2-nanoparticles. Thermochim Acta 675:9–17. https://doi.org/10.1016/j.tca.2019.02.015

    Article  CAS  Google Scholar 

  19. Lou L, He Z, Li Y, Li Y, Zhou Y, Lin C, Yang W (2020) Multifunctional silicone rubber/paraffin@ PbWO4 phase-change composites for thermoregulation and gamma radiation shielding. Int J Energy Res 44(9):7674–7686. https://doi.org/10.1002/er.5498

    Article  CAS  Google Scholar 

  20. Diarce G, Corro-Martínez E, Campos-Celador A, García-Romero A, Sala JM (2016) The sodium nitrate–urea eutectic binary mixture as a phase change material for medium temperature thermal energy storage. Part II: accelerated thermal cycling test and water uptake behavior of the material. Sol Energy Mater Sol Cells 157:1076–1083. https://doi.org/10.1016/j.solmat.2016.04.020

    Article  CAS  Google Scholar 

  21. Sharma RK, Ganesan P, Tyagi VV, Mahlia TMI (2016) Accelerated thermal cycle and chemical stability testing of polyethylene glycol (PEG) 6000 for solar thermal energy storage. Sol Energy Mater Sol Cells 147:235–239. https://doi.org/10.1016/j.solmat.2015.12.023

    Article  CAS  Google Scholar 

  22. Sharma RK, Ganesan P, Tyagi VV (2016) Long-term thermal and chemical reliability study of different organic phase change materials for thermal energy storage applications. J Therm Anal Calorim 124:1357–1366. https://doi.org/10.1007/s10973-016-5281-5

    Article  CAS  Google Scholar 

  23. Karaipekli A, Biçer A, Sarı A, Tyagi VV (2017) Thermal characteristics of expanded perlite/paraffin composite phase change material with enhanced thermal conductivity using carbon nanotubes. Energy Convers Manag 134:373–381. https://doi.org/10.1016/j.enconman.2016.12.053

    Article  CAS  Google Scholar 

  24. Cheng T, Wang N, Wang H, Sun R, Wong CP (2020) A newly designed paraffin@ VO2 phase change material with the combination of high latent heat and large thermal conductivity. J Colloid Interface Sci 559:226–235

    Article  CAS  PubMed  Google Scholar 

  25. Zhang L, Dong J (2017) Experimental study on the thermal stability of a paraffin mixture with up to 10,000 thermal cycles. Therm Sci Eng Pro 1:78–87. https://doi.org/10.1016/j.tsep.2017.02.005

    Article  Google Scholar 

  26. Sarı A, Bicer A, Al-Sulaiman FA, Karaipekli A, Tyagi VV (2018) Diatomite/CNTs/PEG composite PCMs with shape-stabilized and improved thermal conductivity: preparation and thermal energy storage properties. Energy Build 164:166–175. https://doi.org/10.1016/j.enbuild.2018.01.009

    Article  Google Scholar 

  27. Mengjie S, Pun WM, Swapnil D, Dongmei P, Ning PM (2017) Thermal stability of organic binary PCMs for energy storage. Energy Procedia 142:3287–3294. https://doi.org/10.1016/j.egypro.2017.12.459

    Article  CAS  Google Scholar 

  28. Mengjie S, Liyuan L, Fuxin N, Ning M, Shengchun L, Yanxin H (2018) Thermal stability experimental study on three types of organic binary phase change materials applied in thermal energy storage system. J Therm Sci Eng Appl. https://doi.org/10.1115/1.4039702

    Article  Google Scholar 

  29. Zhou J, Lai X, Hu J, Qi H, Liu S, Zhang Z (2022) Design of a graphene oxide@ melamine foam/polyaniline@ erythritol composite phase change material for thermal energy storage. Chin J Chem Eng. https://doi.org/10.1016/j.cjche.2022.10.016

    Article  Google Scholar 

  30. Zinatloo AS, Salavati NM (2016) Preparation of nanocrystalline cubic ZrO2 with different shapes via a simple precipitation approach. J Mater Sci Mater Electron 27:3918–3928. https://doi.org/10.1007/s10854-015-4243-1

    Article  CAS  Google Scholar 

  31. Etemadi H, Afsharkia S, Zinatloo AS, Shokri E (2021) Effect of alumina nanoparticles on the antifouling properties of polycarbonate-polyurethane blend ultrafiltration membrane for water treatment. Polym Eng Sci 61(9):2364–2375. https://doi.org/10.1002/pen.25764

    Article  CAS  Google Scholar 

  32. Tabatabaeinejad SM, Zinatloo AS, Amiri O, Salavati NM (2021) Magnetic Lu2Cu2O5 based ceramic nanostructured materials fabricated by a simple and green approach for an effective photocatalytic degradation of organic contamination. RSC Adv 11(63):40100–40111. https://doi.org/10.1016/j.ultsonch.2021.105892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zinatloo AS, Salavati NM (2019) Preparation of magnetically retrievable CoFe2O4@ SiO2@ Dy2Ce2O7 nanocomposites as novel photocatalyst for highly efficient degradation of organic contaminants. Compos B Eng 174:106930. https://doi.org/10.1016/j.compositesb.2019.106930

    Article  CAS  Google Scholar 

  34. Zinatloo AS, Mortazavi DS, Salavati NM (2018) Nd2O3-SiO2 nanocomposites: a simple sonochemical preparation, characterization and photocatalytic activity. Ultrasonicssonochemistry 42:171–182. https://doi.org/10.1016/j.ultsonch.2017.11.026

    Article  CAS  Google Scholar 

  35. Tabatabaeinejad SM, Zinatloo AS, Amiri O, Salavati NM (2021) Magnetic Lu2Cu2O5-based ceramic nanostructured materials fabricated by a simple and green approach for an effective photocatalytic degradation of organic contamination. https://doi.org/10.1039/d1ra06101a

  36. Liu Z, Hu D, Yao J, Wang Y, Zhang G, Křemenáková D, Militky J, Wiener J, Li L, Zhu G (2022) Fabrication and performance of phase change thermoregulated fiber from bicomponent melt spinning. Polymers 14(9):1895. https://doi.org/10.3390/polym14091895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Yuan J, Zhou F, Gui Q, Yuan Y, Zhang H (2023) Preparation and properties of light-triggered self-healing form-stable phase change materials. J Energy Storage 58:106366. https://doi.org/10.1016/j.est.2022.106366

    Article  Google Scholar 

  38. Pan X, Zhu Z, He Y (2023) Preparation and photo-responsive behavior of azobenzene decorated PEG single crystal. Opt Mater 135:113324. https://doi.org/10.1016/j.optmat.2022.113324

    Article  CAS  Google Scholar 

  39. Yang L, Zhang N, Yuan Y, Cao X, Qian B, Zeng C (2023) A new operating model for improving thermal efficiency of double-glazed solar air-phase change material collector: an experimental study. J Energy Storage 58:106448. https://doi.org/10.1016/j.est.2022.106448

    Article  Google Scholar 

  40. Taheri QN, Zinatloo S (2011) Synthesis and characterization of gelatin nanoparticles using CDI/NHS as a non-toxic cross-linking system. J Mater Sci Mater Med 22:63–69. https://doi.org/10.1007/s10856-010-4178-2

    Article  CAS  Google Scholar 

  41. Elamin NY, Modwi A, Abd EW, Rajeh A (2023) Synthesis and structural of Fe3O4 magnetic nanoparticles and its effect on the structural optical, and magnetic properties of novel poly(methyl methacrylate)/polyaniline composite for electromagnetic and optical applications. Opt Mater 135:113323. https://doi.org/10.1016/j.optmat.2022.113323

    Article  CAS  Google Scholar 

  42. Mehboob S, Lee JY, Ahn JH, Abbas S, Do XH, Kim J, Ha HY (2023) Perfect capacity retention of all-vanadium redox flow battery using nafion/polyaniline composite membranes. J Ind Eng Chem. https://doi.org/10.1016/j.jiec.2023.01.038

    Article  Google Scholar 

  43. Laria JG, Gaggino R, Kreiker J, Peisino LE, Positieri M, Cappelletti A (2023) Mechanical and processing properties of recycled PET and LDPE-HDPE composite materials for building components. J Thermoplast Compos Mater 36(1):418–431. https://doi.org/10.1177/0892705720939141

    Article  CAS  Google Scholar 

  44. Zhao Y, Lin X, Hu M, Xu L, Ding J, Ding Y (2023) Development and investigation of form-stable and cyclabledecanoic acid-based composite phase change materials for efficient battery thermal management. J Power Sources 558:232615. https://doi.org/10.1016/j.jpowsour.2022.232615

    Article  CAS  Google Scholar 

  45. Morimoto R, Suzuki T, Minami H (2023) Morphology of polypropylene/polystyrene composite particles prepared by seeded emulsion polymerization: influence of azo initiator intrinsic charge. Polym Chem. https://doi.org/10.1039/D2PY01235A

    Article  Google Scholar 

  46. Sarı A, Saleh TA, Hekimoğlu G, Tuzen M, Tyagi VV (2020) Evaluation of carbonized waste tire for development of novel shape stabilized composite phase change material for thermal energy storage. Waste Manag 103:352–436. https://doi.org/10.1016/j.wasman.2019.12.051

    Article  CAS  PubMed  Google Scholar 

  47. Wang Y, Ji H, Shi H, Zhang T, Xia T (2015) Fabrication and characterization of stearic acid/polyaniline composite with electrical conductivity as phase change materials for thermal energy storage. Energy Convers Manag 98:322–330. https://doi.org/10.1016/j.enconman.2015.03.115

    Article  CAS  Google Scholar 

  48. Bai K, Li C, Xie B, Zhang D, Lv Y, Xiao J, Chen J (2022) Emerging PEG/VO2 dual phase change materials for thermal energy storage. Sol Energy Mater Sol Cells 239:111686. https://doi.org/10.1016/j.solmat.2022.111686

    Article  CAS  Google Scholar 

  49. Boeva ZA, Sergeyev VG (2014) Polyaniline, synthesis, properties, and application. Polym Sci Ser C 56:144–153. https://doi.org/10.1134/S1811238214010032

    Article  CAS  Google Scholar 

  50. George M, Pandey AK, Abd RN, Tyagi VV, Shahabuddin S, Saidur R (2020) Long-term thermophysical behavior of paraffin wax and paraffin wax/polyaniline (PANI) composite phase change materials. J Energy Storage 31:101568. https://doi.org/10.1016/j.est.2020.101568

    Article  Google Scholar 

  51. Chen YH, Jiang LM, Fang Y, Shu L, Zhang YX, Xie T, Zeng JL (2019) Preparation and thermal energy storage properties of erythritol/polyaniline form-stable phase change material. Sol Energy Mater Sol Cells. https://doi.org/10.1016/j.solmat.2019.109989

    Article  Google Scholar 

  52. Wu W, Wu W, Wang S (2019) Form-stable and thermally induced flexible composite phase change material for thermal energy storage and thermal management applications. Appl Energy 236:10–21. https://doi.org/10.1016/j.apenergy.2018.11.071

    Article  CAS  Google Scholar 

  53. Mert HH (2020) Poly HIPE composite based-form stable phase change material for thermal energy storage. Int J Energy Res 44(8):6583–6594. https://doi.org/10.1002/er.5390

    Article  CAS  Google Scholar 

  54. Chen P, Gao X, Wang Y, Xu T, Fang Y, Zhang Z (2016) Metal foam embedded in SEBS/paraffin/HDPE form-stable PCMs for thermal energy storage. Sol Energy Mater Sol Cells 149:60–65. https://doi.org/10.1016/j.solmat.2015.12.04

    Article  CAS  Google Scholar 

  55. Rahmalina D, Rahman RA (2022) Increasing the rating performance of paraffin up to 5000 cycles for active latent heat storage by adding high-density polyethylene to form shape-stabilized phase change material. J Energy Storage 46:103762. https://doi.org/10.1016/j.est.2021.103762

    Article  Google Scholar 

  56. Cheng F, Xu Y, Lv Z, Huang Z, Fang M, Liu YG, Min X (2021) Form-stable and tough paraffin-Al2O3/high density polyethylene composites as environment-friendly thermal energy storage materials: preparation, characterization and analysis. J Therm Anal Calorim 146:2089–2099. https://doi.org/10.1007/s10973-020-10450-2

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors express their gratitude to the department of Physics, GBPUAT, Pantnagar, and Uttarakhand, India, for providing all kinds of support for the successful completion of this research. The authors also want to thank Lovely Professional University, Punjab, for extending support for characterizing samples in its Central Instrumentation Facility (CIF) Lab.

Funding

No source of funding was received for conducting current research.

Author information

Authors and Affiliations

Authors

Contributions

Neetu Bora and Deepika P. Joshi were involved in conceptualization; Neetu Bora was involved in analysis and investigation and writing—original draft preparation; Neetu Bora, Deepika P. Joshi, and Jaspreet Singh Aulakh were involved in interpretation and review and editing; and Deepika P. Joshi was involved in supervision.

Corresponding author

Correspondence to Neetu Bora.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Consent to publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bora, N., Joshi, D.P. & Aulakh, J.S. Influence of polyaniline conducting polymer on thermal properties of phase change material for thermal energy storage. Polym. Bull. 81, 1597–1621 (2024). https://doi.org/10.1007/s00289-023-04778-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-023-04778-6

Keywords

Navigation