Skip to main content
Log in

Form-stable and tough paraffin-Al2O3/high density polyethylene composites as environment-friendly thermal energy storage materials: preparation, characterization and analysis

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In this study, we focus on important global issue containing both environmental pollution control and energy saving. High density polyethylene (HDPE) is utilized as supporting material to load paraffin, while Al2O3 nano-powder is added into composite behaving as thermal conductivity enhancement to form composite phase change materials (paraffin-Al2O3/HDPE composite PCMs). By the adsorption test and differential scanning calomeritry (DSC) curves, the loading ratio of paraffin in paraffin/HDPE composite is 60%, via taking phase change enthalpy and thermal conductivity into integrated consideration, the adding ratio of Al2O3 is 3% in paraffin-Al2O3/HDPE composite. And CMT4304 universal tester results manifest paraffin-Al2O3/HDPE composites have high compressive strength. For paraffin-Al2O3/HDPE composite with 3 mass% Al2O3, Fourier transformation infrared (FT-IR) result indicates no chemical interaction among raw materials but physical combination. DSC results identify composite PCM happens solid–solid phase transition at 33.3 ºC with enthalpy value of 10.7 J g−1 and melts at 48.8 ºC with enthalpy value of 95.1 J g−1, and thermal cycling measurements demonstrate the form-stable composite PCM with adequate stability after 300 times melting/freezing cycles. Furthermore, the thermal conductivity of paraffin/HDPE composite is enhanced by 119.4% to attain 0.419 Wm−1 K−1 after addition of Al2O3. To sum up, form-stable and tough paraffin-Al2O3/HDPE composite PCMs look promising for application in building field as solar energy utilization materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Tang YJ, Su D, Huang X, Alva G, Liu LK, Fang GY. Synthesis and thermal properties of the MA/HDPE composite with nano-additives as form-stable PCM with improved thermal conductivity. Appl Energy. 2016;180:116–29.

    Article  CAS  Google Scholar 

  2. Liu H, Wu Q, Zhang Q. Preparation and properties of banana fiber-reinforced composites based on high density polyethylene (HDPE)/Nylon-6 blends. Biores Technol. 2009;100:6088–97.

    Article  CAS  Google Scholar 

  3. Cheng WL, Zhang RM, Xie K, Liu N, Wang J. Heat conduction enhanced shape-stabilized paraffin/HDPE composite PCMs by graphite addition: preparation and thermal properties. Sol Energy Mat Sol C. 2010;94:1636–42.

    Article  CAS  Google Scholar 

  4. Tang YJ, Jia YT, Alva G, Huang X, Fang GY. Synthesis, characterization and properties of palmitic acid/high density polyethylene/graphene nanoplatelets composites as form-stable phase change materials. Sol Energy Mat Sol C. 2016;155:421–9.

    Article  CAS  Google Scholar 

  5. Zhang S, Cao XY, Ma YM, Ke YC, Zhang JK, Wang FS. The effects of particle size and content on the thermal conductivity and mechanical properties of Al2O3/high density polyethylene (HDPE) composites. Express Polym Lett. 2011;57:581–90.

    Article  Google Scholar 

  6. Che JJ, Jing MF, Liu DY, Wang K, Fu Q. Largely enhanced thermal conductivity of HDPE/boron nitride/carbon nanotubes ternary composites via filler network-network synergy and orientation. Compos Part A Appl Sci. 2018;112:32–9.

    Article  CAS  Google Scholar 

  7. Wen RL, Huang ZH, Huang YT, Zhang XG, Min X, Fang MH, Liu YG, Wu XW. Synthesis and characterization of lauric acid/expanded vermiculite as form-stabilized thermal energy storage materials. Energy Build. 2016;116:677–83.

    Article  Google Scholar 

  8. Yu S, Wang X, Wu D. Microencapsulation of n-octadecane phase change material with calcium carbonate shell for enhancement of thermal conductivity and serving durability: synthesis, microstructure, and performance evaluation. Appl Energy. 2014;114:632–43.

    Article  CAS  Google Scholar 

  9. Fu X, Liu Z, Wu B, et al. Preparation and thermal properties of stearic acid/diatomite composites as form-stable phase change materials for thermal energy storage via direct impregnation method. J Therm Anal Calorim. 2016;123(2):1173–81.

    Article  CAS  Google Scholar 

  10. Zhang XG, Liu HT, Huang ZH, et al. Preparation and characterization of the properties of polyethylene glycol@Si3N4 nanowires as phase-change materials. Chem Eng J. 2016;301:229–37.

    Article  CAS  Google Scholar 

  11. Cheng F, Wen RL, Huang ZH, Fang MH, Liu YG, Wu XW, Min X. Preparation and analysis of lightweight wall material with expanded graphite (EG)/paraffin composites for solar energy storage. Appl Therm Eng. 2017;120:107–14.

    Article  CAS  Google Scholar 

  12. Lee KO, Medina MA, Raith E, Sun X. Assessing the integration of a thin phase change material (PCM) layer in a residential building wall for heat transfer reduction and management. Appl Energy. 2015;137:699–706.

    Article  CAS  Google Scholar 

  13. Lecompte T, Bideau PL, Glouannec P, et al. Mechanical and thermo-physical behaviour of concretes and mortars containing phase change material. Energy Build. 2015;94:52–60.

    Article  Google Scholar 

  14. Li C, Yang H. Expanded vermiculite/paraffin composite as a solar thermal energy storage material. J Am Ceram Soc. 2013;96:2793–8.

    Article  CAS  Google Scholar 

  15. Zhang H, Gao XN, Chen CX, et al. A capric–palmitic–stearic acid ternary eutectic mixture/expanded graphite composite phase change material for thermal energy storage. Compos Part A Appl S. 2016;87:138–45.

    Article  CAS  Google Scholar 

  16. Amin M, Putra N, Kosasih EA, Prawiro E, Luanto RA, Mahlia TMI. Thermal properties of beewaxs/graphene phase change material as energy storage for building applications. Appl Therm Eng. 2017;112:273–80.

    Article  CAS  Google Scholar 

  17. Latibari ST, Mehrali M, Mehrali M, Mahlia TMI, Metselaar HSC. Fabrication and performances of microencapsulated palmitic acid with enhanced thermal properties. Energy Fuels. 2015;29(2):1010–8.

    Article  Google Scholar 

  18. Wu Y, Wang T. The dependence of phase change enthalpy on the pore structure and interfacial groups in hydrated salts/silica composites via sol-gel. J Colloid Interface Sci. 2015;448:100–5.

    Article  CAS  Google Scholar 

  19. Zhang N, Yuan YP, Du YX, Cao XY, Yuan YG. Preparation and properties of palmitic-stearic acid eutectic mixture/expanded graphite composite as phase change material for energy storage. Energy. 2014;78:950–6.

    Article  CAS  Google Scholar 

  20. Mehrali M, Latibari ST, Mehrali M, Mahlia TMI, Sadeghinezhad E, Metselaara HSC. Preparation of nitrogen-doped graphene/palmitic acid shape stabilized composite phase change material with remarkable thermal properties for thermal energy storage. Appl Energy. 2014;135:339–49.

    Article  CAS  Google Scholar 

  21. Cheng F, Wen RL, Zhang XG, Huang ZH, Huang YT, Fang MH, Liu YG, Wu XW, Min X. Synthesis and characterization of beeswax-tetradecanol-carbon fiber/expanded perlite form-stable composite phase change material for solar energy storage. Compos Part A Appl Sci. 2018;107:180–8.

    Article  CAS  Google Scholar 

  22. Guan WM, Li JH, Qian TT, Wang X, Deng Y. Preparation of paraffin/expanded vermiculite with enhanced thermal conductivity by implanting network carbon in vermiculite layers. Chem Eng J. 2015;277:56–63.

    Article  CAS  Google Scholar 

  23. Putra N, Prawiro E, Amin M. Thermal properties of beeswax/Cuo nano phase-change material used for thermal energy storage. Int J Technol. 2016;7(2):244–53.

    Article  Google Scholar 

  24. Yang XT, Tang L, Guo YQ, Liang CB, Zhang QY, Kou KC, Gu JW. Improvement of thermal conductivities for PPS dielectric nanocomposites via incorporating NH2-POSS functionalized nBN fillers. Compos Part A Appl S. 2017;101:237.

    Article  CAS  Google Scholar 

  25. Jeong SG, Jeon J, Lee JH, Kim S. Optimal preparation of PCM/diatomite composites for enhancing thermal properties. Int J Heat Mass Trans. 2013;62:711–7.

    Article  CAS  Google Scholar 

  26. Sarı A, Karaipekli A, Alkan C. Preparation, characterization and thermal properties of lauric acid/expanded perlite as novel form-stable composite phase change material. Chem Eng J. 2009;155:899–904.

    Article  Google Scholar 

  27. Sarı A, Karaipekli A. Preparation, thermal properties and thermal reliability of capric acid/expanded perlite composite for thermal energy storage. Mater Chem Phys. 2008;109:459–64.

    Article  Google Scholar 

  28. Krupa I, Nógellová Z, Špitalsky Z, et al. Phase change materials based on high-density polyethylene filled with microencapsulated paraffin wax. Energy Convers Manag. 2014;87:400–9.

    Article  CAS  Google Scholar 

  29. Karaıpeklı A, Sarı A, Kaygusuz K. Thermal characteristics of paraffin/expanded perlite composite for latent heat thermal energy storage. Energy Source Part A. 2009;31:814–23.

    Article  Google Scholar 

  30. Yin ZY, Huang ZH, Wen RL, Zhang XG, Tan B, Liu YG, Wu XW, Fang MH. Preparation and thermal properties of phase change materials based on paraffin with expanded graphite and carbon foams prepared from sucroses. RSC Adv. 2016;6:95085.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This present work was supported by the Fundamental Research Funds for the Central Universities for financial support (Grant No. 2652019154, 2652019153 and 2652019152). The authors also wish to thank the editor and reviewers for kindly giving revising suggestions.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhaohui Huang or Xin Min.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, F., Xu, Y., Lv, Z. et al. Form-stable and tough paraffin-Al2O3/high density polyethylene composites as environment-friendly thermal energy storage materials: preparation, characterization and analysis. J Therm Anal Calorim 146, 2089–2099 (2021). https://doi.org/10.1007/s10973-020-10450-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-10450-2

Keywords

Navigation