Skip to main content
Log in

Long-term thermal and chemical reliability study of different organic phase change materials for thermal energy storage applications

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The purpose of this experimental study is to determine the thermal and chemical reliability of organic phase change materials (O-PCMs) viz. paraffin, palmitic acid, and myristic acid for 1500 accelerated melt/freeze. The differential scanning calorimeter (DSC) was used to measure the melting temperature and the latent heat of fusion at zeroth cycle and after 100th, 500th, 1000th, and 1500th thermal cycles. The DSC results show the gradual changes in the value of thermophysical properties of all the tested PCMs. The changes in melting temperature of paraffin, palmitic acid, and myristic acid have been found in the range of +0.72 to +3.27, −0.29 to +1.76, and −2.09 to +1.5 °C, respectively, and the latent heat of fusion in −9.8 to 14.2, 3.3 to 17.8, and 0.9 to 9.7 %, respectively. The Fourier transform and infrared spectroscopy (FT-IR) technique was used to investigate the changes in the compositional/functional group of the O-PCMs before and after thermal cycles. The FT-IR spectrum confirms the chemical stability during the thermal cycle test. The experimental results show that these organic PCMs possess a good thermal reliability in terms of melting temperature and the latent heat of fusion and chemical stability during thermal cycle testing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Shukla A, Buddhi D, Sawhney R. Thermal cycling test of few selected inorganic and organic phase change materials. Renew Energy. 2008;33(12):2606–14.

    Article  CAS  Google Scholar 

  2. Sharma A, Shukla A. Thermal cycle test of binary mixtures of some fatty acids as phase change materials for building applications. Energy Build. 2015;99:196–203. doi:10.1016/j.enbuild.2015.04.028.

    Article  Google Scholar 

  3. Shringi V, Kothari S, Panwar N. Experimental investigation of drying of garlic clove in solar dryer using phase change material as energy storage. J Therm Anal Calorim. 2014;118(1):533–9.

    Article  CAS  Google Scholar 

  4. Sharma A, Tyagi VV, Chen CR, Buddhi D. Review on thermal energy storage with phase change materials and applications. Renew Sustain Energy Rev. 2009;13(2):318–45. doi:10.1016/j.rser.2007.10.005.

    Article  CAS  Google Scholar 

  5. Sharma RK, Ganesan P, Tyagi VV, Metselaar HSC, Sandaran SC. Developments in organic solid–liquid phase change materials and their applications in thermal energy storage. Energy Convers Manag. 2015;95:193–228. doi:10.1016/j.enconman.2015.01.084.

    Article  CAS  Google Scholar 

  6. Parameshwaran R, Jayavel R, Kalaiselvam S. Study on thermal properties of organic ester phase-change material embedded with silver nanoparticles. J Therm Anal Calorim. 2013;114(2):845–58. doi:10.1007/s10973-013-3064-9.

    Article  CAS  Google Scholar 

  7. Sharma S, Buddhi D, Sawhney R. Accelerated thermal cycle test of latent heat-storage materials. Sol Energy. 1999;66(6):483–90.

    Article  CAS  Google Scholar 

  8. Ting K, Giannakakos P, Gilbert S. Durability of latent heat storage tube-sheets. Sol Energy. 1987;39(2):79–85.

    Article  Google Scholar 

  9. Porisini FC. Salt hydrates used for latent heat storage: corrosion of metals and reliability of thermal performance. Sol Energy. 1988;41(2):193–7.

    Article  CAS  Google Scholar 

  10. Heine D, Abhat A. Investigation of physical and chemical properties of phase change materials for space heating/cooling applications. In: DeWinter F, Cox M, editors. Sun: mankind’s future source of energy. Oxford: Pergamon; 1978.

    Google Scholar 

  11. Aboul-Enein S, Olofa S. Thermophysical properties of heat-of-fusion storage materials for cooling applications. Renew Energy. 1991;1(5):791–7.

    Article  CAS  Google Scholar 

  12. Hasan A, Sayigh AA. Some fatty acids as phase-change thermal energy storage materials. Renew Energy. 1994;4(1):69–76. doi:10.1016/0960-1481(94)90066-3.

    Article  CAS  Google Scholar 

  13. Sharma A, Sharma S, Buddhi D. Accelerated thermal cycle test of acetamide, stearic acid and paraffin wax for solar thermal latent heat storage applications. Energy Convers Manag. 2002;43(14):1923–30.

    Article  CAS  Google Scholar 

  14. Tyagi VV, Buddhi D. PCM thermal storage in buildings: a state of art. Renew Sustain Energy Rev. 2007;11(6):1146–66. doi:10.1016/j.rser.2005.10.002.

    Article  Google Scholar 

  15. Baetens R, Jelle BP, Gustavsen A. Phase change materials for building applications: a state-of-the-art review. Energy Build. 2010;42(9):1361–8. doi:10.1016/j.enbuild.2010.03.026.

    Article  Google Scholar 

  16. Rathod MK, Banerjee J. Thermal stability of phase change materials used in latent heat energy storage systems: a review. Renew Sustain Energy Rev. 2013;18:246–58. doi:10.1016/j.rser.2012.10.022.

    Article  CAS  Google Scholar 

  17. Desgrosseilliers L, Whitman CA, Groulx D, White MA. Dodecanoic acid as a promising phase-change material for thermal energy storage. Appl Therm Eng. 2013;53(1):37–41. doi:10.1016/j.applthermaleng.2012.12.031.

    Article  CAS  Google Scholar 

  18. Anghel E, Georgiev A, Petrescu S, Popov R, Constantinescu M. Thermo-physical characterization of some paraffins used as phase change materials for thermal energy storage. J Therm Anal Calorim. 2014;117(2):557–66.

    Article  Google Scholar 

  19. Hasnain SM. Review on sustainable thermal energy storage technologies. Part I: Heat storage materials and techniques. Energy Convers Manag. 1998;39(11):1127–38. doi:10.1016/S0196-8904(98)00025-9.

    Article  CAS  Google Scholar 

  20. Yu H, Gao J, Chen Y, Zhao Y. Preparation and properties of stearic acid/expanded graphite composite phase change material for low-temperature solar thermal application. J Therm Anal Calorim. 2015;. doi:10.1007/s10973-015-5151-6.

    Google Scholar 

  21. Al-Hinti I, Al-Ghandoor A, Maaly A, Abu Naqeera I, Al-Khateeb Z, Al-Sheikh O. Experimental investigation on the use of water-phase change material storage in conventional solar water heating systems. Energy Convers Manag. 2010;51(8):1735–40. doi:10.1016/j.enconman.2009.08.038.

    Article  CAS  Google Scholar 

  22. Khalifa AJN, Suffer KH, Mahmoud MS. A storage domestic solar hot water system with a back layer of phase change material. Exp Therm Fluid Sci. 2013;44:174–81. doi:10.1016/j.expthermflusci.2012.05.017.

    Article  CAS  Google Scholar 

  23. Chaabane M, Mhiri H, Bournot P. Thermal performance of an integrated collector storage solar water heater (ICSSWH) with phase change materials (PCM). Energy Convers Manag. 2014;78:897–903. doi:10.1016/j.enconman.2013.07.089.

    Article  CAS  Google Scholar 

  24. Reyes A, Mahn A, Vásquez F. Mushrooms dehydration in a hybrid-solar dryer, using a phase change material. Energy Convers Manag. 2014;83:241–8. doi:10.1016/j.enconman.2014.03.077.

    Article  CAS  Google Scholar 

  25. Mahfuz MH, Anisur MR, Kibria MA, Saidur R, Metselaar IHSC. Performance investigation of thermal energy storage system with phase change material (PCM) for solar water heating application. Int Commun Heat Mass Transf. 2014;57:132–9. doi:10.1016/j.icheatmasstransfer.2014.07.022.

    Article  Google Scholar 

  26. Al-Kayiem HH, Lin SC. Performance evaluation of a solar water heater integrated with a PCM nanocomposite TES at various inclinations. Sol Energy. 2014;109:82–92. doi:10.1016/j.solener.2014.08.021.

    Article  CAS  Google Scholar 

  27. Tyagi VV, Pandey AK, Kaushik SC, Tyagi SK. Thermal performance evaluation of a solar air heater with and without thermal energy storage. J Therm Anal Calorim. 2012;107(3):1345–52. doi:10.1007/s10973-011-1617-3.

    Article  CAS  Google Scholar 

  28. Hasan A. Phase change material energy storage system employing palmitic acid. Sol Energy. 1994;52(2):143–54. doi:10.1016/0038-092X(94)90064-7.

    Article  CAS  Google Scholar 

  29. Hasan A. Thermal energy storage system with stearic acid as phase change material. Energy Convers Manag. 1994;35(10):843–56.

    Article  CAS  Google Scholar 

  30. Mazman M, Cabeza LF, Mehling H, Nogues M, Evliya H, Paksoy HÖ. Utilization of phase change materials in solar domestic hot water systems. Renew Energy. 2009;34(6):1639–43. doi:10.1016/j.renene.2008.10.016.

    Article  Google Scholar 

  31. Weng Y-C, Cho H-P, Chang C-C, Chen S-L. Heat pipe with PCM for electronic cooling. Appl Energy. 2011;88(5):1825–33. doi:10.1016/j.apenergy.2010.12.004.

    Article  CAS  Google Scholar 

  32. He H, Zhao P, Yue Q, Gao B, Yue D, Li Q. A novel polynary fatty acid/sludge ceramsite composite phase change materials and its applications in building energy conservation. Renew Energy. 2015;76:45–52. doi:10.1016/j.renene.2014.11.001.

    Article  CAS  Google Scholar 

  33. Genc ZK, Canbay CA, Acar SS, Sekerci M, Genc M. Preparation and thermal properties of heterogeneous composite phase change materials based on camphene–palmitic acid. J Therm Anal Calorim. 2015;120(3):1679–88.

    Article  CAS  Google Scholar 

  34. Zhu F-R, Zhang L, Zeng J-L, Zhu L, Zhu Z, Zhu X-Y, et al. Preparation and thermal properties of palmitic acid/polyaniline/copper nanowires form-stable phase change materials. J Therm Anal Calorim. 2014;115(2):1133–41.

    Article  CAS  Google Scholar 

  35. Yinping Z, Yi J. A simple method, the T-history method, of determining the heat of fusion, specific heat and thermal conductivity of phase-change materials. Meas Sci Technol. 1999;10(3):201.

    Article  CAS  Google Scholar 

  36. Hale DV, Hoover MJ, O’Niell MJ. Phase change materials hand-book. Huntsville: NASA CR-61363, Marshal Space Flight Center; 1971.

    Google Scholar 

  37. Tyagi VV, Panwar NL, Rahim NA, Kothari R. Review on solar air heating system with and without thermal energy storage system. Renew Sustain Energy Rev. 2012;16(4):2289–303. doi:10.1016/j.rser.2011.12.005.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research is financially supported by the University of Malaya under the grant of Ministry of Higher Education High Impact Research (UM.C/HIR/MOHE/ENG/20) and University Malaya Research Grant (AFR: Frontier Science: RP031C-15FR).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to R. K. Sharma or P. Ganesan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, R.K., Ganesan, P. & Tyagi, V.V. Long-term thermal and chemical reliability study of different organic phase change materials for thermal energy storage applications. J Therm Anal Calorim 124, 1357–1366 (2016). https://doi.org/10.1007/s10973-016-5281-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-016-5281-5

Keywords

Navigation