Skip to main content
Log in

Preparation of nanocrystalline cubic ZrO2 with different shapes via a simple precipitation approach

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this study, Triethylenetetramine (Trien) was employed not only as precipitator, but also as morphology- and size-modifier to prepare pure cubic zirconium dioxide nanocrystals. Trien with high steric hindrance effect was employed as morphology- and size-modifier. Besides Trien as novel precipitator, zirconyl nitrate was employed as zirconium source for the synthesis of pure cubic zirconium dioxide nanocrystals through a facile surfactant-free precipitation process. SEM results of this investigation reveal that grain size and shape of the zirconium dioxide powders can be modified by changing key preparation factors such as the solvent sort, precipitator concentration and reaction time. XRD, FESEM, DR–UV–vis, PL, FT-IR and EDX were used to characterize the as-produced zirconium dioxide nanocrystals. Moreover, the photocatalytic performance of as-prepared zirconium dioxide nanocrystals was evaluated by degradation of erythrosine dye as a model of water pollutant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. S. Link, Z.L. Wang, M.A. EI-Sayed, J. Phys. Chem. B 103, 529 (1999)

    Google Scholar 

  2. S. Zinatloo-Ajabshir, M. Salavati-Niasari, Int. J. Appl. Ceram. Technol. 11, 654 (2014)

    Article  Google Scholar 

  3. Y. Yan, B. Sun, D.J. Ma, J. Mater. Sci. Mater. Electron. doi:10.1007/s10854-015-3782-9

  4. B. Sun, W. Zhao, L. Wei, H. Li, P. Chen, Chem. Commun. 50, 13142 (2014)

    Article  Google Scholar 

  5. E.P. Marray, T. Tsai, S.A. Barnett, Nature 400, 649 (1999)

    Article  Google Scholar 

  6. A.V. Chadwich, Nature 408, 925 (2000)

    Article  Google Scholar 

  7. B.C.H. Steele, A. Heinzel, Nature 414, 345 (2001)

    Article  Google Scholar 

  8. N.L. Wu, S.Y. Wang, I.A. Rusakova, Science 285, 1375 (1999)

    Article  Google Scholar 

  9. S. Park, J.M. Vohs, R.J. Gorte, Nature 404, 265 (2000)

    Article  Google Scholar 

  10. V. Grover, R. Shukla, A.K. Tyagi, Scr. Mater. 57, 699 (2007)

    Article  Google Scholar 

  11. W. Li, H. Huang, H. Li, W. Zhang, H. Liu, Langmuir 24, 8358 (2008)

    Article  Google Scholar 

  12. N. Garg, V.K. Mittal, S. Bera, A. Dasgupta, V. Sankaralingam, Ceram. Int. 38, 2507 (2012)

    Article  Google Scholar 

  13. Q. Chang, J. Zhou, Y. Wang, G. Meng, Adv. Powder Technol. 21, 425 (2010)

    Article  Google Scholar 

  14. L. Kumari, G.H. Du, W.Z. Li, R.S. Vennila, S.K. Saxena, D.Z. Wang, Ceram. Int. 35, 2401 (2009)

    Article  Google Scholar 

  15. M. Salavati-Niasari, M. Dadkhah, F. Davar, Polyhedron 28, 3005 (2009)

    Article  Google Scholar 

  16. E.K. Goharshadi, M. Hadadian, Ceram. Int. 38, 1771 (2012)

    Article  Google Scholar 

  17. Vishwanath G. Deshmane, Yusuf G. Adewuyi, Microporous Mesoporous Mater. 148, 88 (2012)

    Article  Google Scholar 

  18. S. Zinatloo-Ajabshir, M. Salavati-Niasari, J. Ind. Eng. Chem. 20, 3313 (2014)

    Article  Google Scholar 

  19. D.V. Pinjari, K. Prasad, P.R. Gogate, S.T. Mhaske, A.B. Pandit, Chem. Eng. Process. 74, 178 (2013)

    Article  Google Scholar 

  20. M. Salavati-Niasari, D. Ghanbari, F. Davar, J. Alloys Compd. 488, 442 (2009)

    Article  Google Scholar 

  21. M. Shakouri-Arani, M. Salavati-Niasari, J. Ind. Eng. Chem. 20, 3179 (2014)

    Article  Google Scholar 

  22. Sh Ahmadian-Fard-Fini, M. Salavati-Niasari, F. Mohandes, Adv. Powder Technol. 25, 301 (2013)

    Article  Google Scholar 

  23. M. Mousavi-Kamazani, M. Salavati-Niasari, M. Sadeghinia, Superlattices Microstruct. 63, 248 (2013)

    Article  Google Scholar 

  24. M. Jafari, A. Sobhani, M. Salavati-Niasari, J. Ind. Eng. Chem. 20, 3775 (2014)

    Article  Google Scholar 

  25. S. Chandramouleeswaran, S.T. Mhaske, A.A. Kathe, P.V. Varadarajan, V. Prasad, N. Vigneshwaran, Nanotechnology 18, 1 (2007)

    Article  Google Scholar 

  26. A. Manikandan, N. Clament Sagaya Selvam, L. John Kennedy, R. Thinesh Kumar, J. Judith Vijaya, J. Nanosci. Nanotechnol. 13, 2595 (2013)

    Article  Google Scholar 

  27. A. Sobhani, M. Salavati-Niasari, Ceram. Int. 40, 8173 (2014)

    Article  Google Scholar 

  28. A. Sobhani, M. Salavati-Niasari, J. Alloys Compd. 617, 93 (2014)

    Article  Google Scholar 

  29. A. Sobhani, M. Salavati-Niasari, J. Alloys Compd. 625, 26 (2015)

    Article  Google Scholar 

  30. K.G. Kanade, J.O. Baeg, S.K. Apte, T.L. Prakash, B.B. Kale, Mater. Res. Bull. 43, 723 (2008)

    Article  Google Scholar 

  31. M. Salavati-Niasari, D. Ghanbari, M.R. Loghman-Estarki, J. Alloys. Compd. 488, 442 (2009)

    Article  Google Scholar 

  32. N. Clament Sagaya Selvam, A. Manikandan, L. John Kennedy, J. Judith Vijaya, J. Colloid Interface Sci. 389, 91 (2013)

    Article  Google Scholar 

  33. D. Ghanbari, M. Salavati-Niasari, S. Karimzadeh, S. Gholamrezaei, J. NanoStruct. 4, 227 (2014)

    Google Scholar 

  34. G. Nabiyouni, S. Sharifi, D. Ghanbari, M. Salavati-Niasari, J. NanoStruct. 4, 317 (2014)

    Google Scholar 

  35. M. Panahi-Kalamuei, M. Mousavi-Kamazani, M. Salavati-Niasari, J. NanoStruct. 4, 459 (2014)

    Google Scholar 

  36. F. Beshkar, M. Salavati-Niasari, J. NanoStruct. 5, 17 (2015)

    Article  Google Scholar 

  37. L. Nejati-Moghadam, A. Esmaeili Bafghi-Karimabad, M. Salavati-Niasari, H. Safardoust, J. NanoStruct. 5, 47 (2015)

    Google Scholar 

Download references

Acknowledgments

Authors are grateful to the University of Kashan for supporting this work by Grant No. (159271/576).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masoud Salavati-Niasari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zinatloo-Ajabshir, S., Salavati-Niasari, M. Preparation of nanocrystalline cubic ZrO2 with different shapes via a simple precipitation approach. J Mater Sci: Mater Electron 27, 3918–3928 (2016). https://doi.org/10.1007/s10854-015-4243-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-015-4243-1

Keywords

Navigation