Skip to main content
Log in

Synthesis of copper oxide nanoparticles embedded in porous chitosan membrane for photodegradation of organic dyes

  • ORIGINAL PAPER
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Dye-contaminated water from industry is hazardous to human and aquatic lives. Membrane technology is considered a viable approach to resolve the issue. Herein, copper oxide nanoparticles (CuO NPs) embedded in porous chitosan membranes have been prepared using a solution-casting approach with sodium tripolyphosphate as a crosslinker and polyethylene glycol as a porogen. The prepared membranes have been characterized by physicochemical, mechanical and photocatalytic properties. FTIR results indicate some hydrogen bonding across CuO NPs and the chitosan matrix. XRD and TGA analyses reveal that the membranes are thermally stable and somehow crystalline. SEM examination indicates that the membrane surfaces express porous/roughened texture. The contact angle measurement indicates that the pure chitosan and CuO NPs-embedded membranes are hydrophobic, whereas PEG-leached porous chitosan membranes express hydrophilicity. CuO NPs reinforcement has significantly improved the tensile strength, whereas the elongation at break decreased. The CuO NPs incorporated in chitosan membranes exhibit exceptional photocatalytic activities against methyl orange and methylene blue dyes for their effective removal from aqueous media.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Luong THV, Nguyen THT, Nguyen BV et al (2022) Efficient degradation of methyl orange and methylene blue in aqueous solution using a novel Fenton-like catalyst of CuCo-ZIFs. Green Process Synth 11:71–83. https://doi.org/10.1515/gps-2022-0006

    Article  CAS  Google Scholar 

  2. Zhang Y, Sun Y, Li M et al (2022) The application of a three-dimensional flower-like heterojunction containing zinc oxide nanoparticles and modified carbon nitride for enhanced photodegradation. J Alloys Compd 890:161744. https://doi.org/10.1016/j.jallcom.2021.161744

    Article  CAS  Google Scholar 

  3. Demissie H, An G, Jiao R et al (2021) Modification of high content nanocluster-based coagulation for rapid removal of dye from water and the mechanism. Sep Purif Technol 259:117845. https://doi.org/10.1016/j.seppur.2020.117845

    Article  CAS  Google Scholar 

  4. Shindhal T, Rakholiya P, Varjani S et al (2021) A critical review on advances in the practices and perspectives for the treatment of dye industry wastewater. Bioengineered 12:70–87. https://doi.org/10.1080/21655979.2020.1863034

    Article  CAS  PubMed  Google Scholar 

  5. Rafiq A, Ikram M, Ali S et al (2021) Photocatalytic degradation of dyes using semiconductor photocatalysts to clean industrial water pollution. J Ind Eng Chem 97:111–128. https://doi.org/10.1016/j.jiec.2021.02.017

    Article  CAS  Google Scholar 

  6. Dassanayake RS, Acharya S, Abidi N (2021) Recent advances in biopolymer-based dye removal technologies. Molecules 26:4697. https://doi.org/10.3390/molecules26154697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Huma T, Rehman A, Kishwar F, Raza ZA (2022) Citric acid cross-linking of chitosan encapsulated spearmint oil for antibacterial cellulosic fabric. Poly Sci Series. https://doi.org/10.1134/S0965545X22700158

    Article  Google Scholar 

  8. Vedula SS, Yadav GD (2021) Chitosan-based membranes preparation and applications: challenges and opportunities. J Indian Chem Soc 98:100017. https://doi.org/10.1016/j.jics.2021.100017

    Article  CAS  Google Scholar 

  9. Silva AO, Cunha RS, Hotza D et al (2021) Chitosan as a matrix of nanocomposites: a review on nanostructures, processes, properties, and applications. Carbohyd Polym 272:118472. https://doi.org/10.1016/j.carbpol.2021.118472

    Article  CAS  Google Scholar 

  10. Ayub A, Raza ZA (2021) Arsenic removal approaches: a focus on chitosan biosorption to conserve the water sources. Int J Biol Macromol 192:1196–1216. https://doi.org/10.1016/j.ijbiomac.2021.10.050

    Article  CAS  PubMed  Google Scholar 

  11. Hamedi H, Moradi S, Hudson SM, Tonelli AE, King MW (2022) Chitosan based bioadhesives for biomedical applications: a review. Carbohydr Polym 282:119100. https://doi.org/10.1016/j.carbpol.2022.119100

    Article  CAS  PubMed  Google Scholar 

  12. Eom T, Lee J, Lee S, Ozlu B, Kim S, Martin DC, Shim BS (2022) Highly conductive polydopamine coatings by direct electrochemical synthesis on Au. ACS Appl Polym Mater 4:5319–5329. https://doi.org/10.1021/acsapm.2c00317

    Article  CAS  Google Scholar 

  13. Gami F, Algethami N, Ragab HM, Tarabiah AE (2022) Structural, optical and electrical studies of chitosan/polyacrylamide blend filled with synthesized selenium nanoparticles. J Mol Struct 1257:132631. https://doi.org/10.1016/j.molstruc.2022.132631

    Article  CAS  Google Scholar 

  14. Kalanidhi K, Nagaraaj P (2022) N-doped carbon dots incorporated chitosan/polyvinylpyrrolidone based polymer film for advanced packaging applications. Chem Phys Lett 805:139960. https://doi.org/10.1016/j.cplett.2022.139960

    Article  CAS  Google Scholar 

  15. Bolaina-Lorenzo E, Puente-Urbina BA, Espinosa-Neira R, Ledezma A, Rodriguez-Fernández O, Betancourt-Galindo R (2022) A simple method to improve antibacterial properties in commercial face masks via incorporation of ZnO and CuO nanoparticles through chitosan matrix. Mater Chem Phys 287:126299. https://doi.org/10.1016/j.matchemphys.2022.126299

    Article  CAS  Google Scholar 

  16. Guo Y, Wang R, Wang P, Rao L, Wang C (2019) Developing a novel layered boron nitride carbon nitride composite with high efficiency and selectivity to remove protonated dyes from water. ACS Sustain Chem Eng 7:5727–5741. https://doi.org/10.1021/acssuschemeng.8b05150

    Article  CAS  Google Scholar 

  17. Raza ZA, Munim SA, Ayub A (2021) Recent developments in polysaccharide-based electrospun nanofibers for environmental applications. Carbohyd Res 510:108443. https://doi.org/10.1016/j.carres.2021.108443

    Article  CAS  Google Scholar 

  18. Bakhtiyar MJ, Raza ZA, Aslam M, Bajwa SZ, Rehman MS, Rafiq S (2022) Cupric oxide nanoparticles incorporated poly(hydroxybutyrate) nanocomposite for potential biosensing application. Int J Biol Macromol 213:1018–1028. https://doi.org/10.1016/j.ijbiomac.2022.06.018

    Article  CAS  PubMed  Google Scholar 

  19. Rahman NA, Hanifah SA, Mobarak NN, Ahmad A, Ludin NA, Bella F, Su’ait MS (2021) Chitosan as a paradigm for biopolymer electrolytes in solid-state dye-sensitised solar cells. Polymer 230:124092. https://doi.org/10.1016/j.polymer.2021.124092

    Article  CAS  Google Scholar 

  20. Manarin E, Corsini F, Trano S, Fagiolari L, Amici J, Francia C, Bodoardo S, Turri S, Bella F, Griffini G (2022) Cardanol-derived epoxy resins as biobased gel polymer electrolytes for potassium-ion conduction. ACS Appl Polym Mater 4:3855–3865. https://doi.org/10.1021/acsapm.2c00335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Alidoost M, Mangini A, Caldera F, Anceschi A, Amici J, Versaci D, Fagiolari L, Trotta F, Francia C, Bella F, Bodoardo S (2022) Micro-mesoporous carbons from cyclodextrin nanosponges enabling high-capacity silicon anodes and sulfur cathodes for lithiated Si-S batteries. Chem 28:e202104201. https://doi.org/10.1002/chem.202104201

    Article  CAS  Google Scholar 

  22. Trano S, Corsini F, Pascuzzi G, Giove E, Fagiolari L, Amici J, Francia C, Turri S, Bodoardo S, Griffini G, Bella F (2022) Lignin as polymer electrolyte precursor for stable and sustainable potassium batteries. ChemSusChem 15:e202200294. https://doi.org/10.1002/cssc.202200294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Song C, Yan Q, Zhang T, Lin H, Ye H, Yao Q, Zhang S, Li Y, Wang G, Lee JY (2021) Enhanced polysulfide conversion through metal oxide-support interaction in MnOx/MXene. Chem Eng J 420:130452. https://doi.org/10.1016/j.cej.2021.130452

    Article  CAS  Google Scholar 

  24. Tertis M, Sîrbu PL, Suciu M, Bogdan D, Pana O, Cristea C, Simon I (2022) An innovative sensor based on chitosan and graphene oxide for selective and highly-sensitive detection of serotonin. ChemElectroChem 9:e202101328. https://doi.org/10.1002/celc.202101328

    Article  CAS  Google Scholar 

  25. Naseem T, Durrani T (2021) The role of some important metal oxide nanoparticles for wastewater and antibacterial applications: a review. J Environ Chem Ecotoxicol 3:59–75. https://doi.org/10.1016/j.enceco.2020.12.001

    Article  CAS  Google Scholar 

  26. Vasantharaj S, Shivakumar P, Sathiyavimal S, Senthilkumar P, Vijayaram S, Shanmugavel M, Pugazhendhi A (2021) Antibacterial activity and photocatalytic dye degradation of copper oxide nanoparticles (CuONPs) using Justicia gendarussa. Appl Nanosci 18:1–8. https://doi.org/10.1007/s13204-021-01939-9

    Article  CAS  Google Scholar 

  27. Prajapati AK, Mondal MK (2020) Comprehensive kinetic and mass transfer modeling for methylene blue dye adsorption onto CuO nanoparticles loaded on nanoporous activated carbon prepared from waste coconut shell. J Mol Liq 307:112949. https://doi.org/10.1016/j.molliq.2020.112949

    Article  CAS  Google Scholar 

  28. Zango ZU, Dennis JO et al (2021) Effective removal of methylene blue from simulated wastewater using ZnO-chitosan nanocomposites: optimization, kinetics, and Isotherm studies. Molecules 27:4746. https://doi.org/10.3390/molecules27154746

    Article  CAS  Google Scholar 

  29. Bryan MY, Chai PV, Law JY, Mahmoudi E (2022) Graphene oxide-chitosan composite material as adsorbent in removing methylene blue dye from synthetic wastewater. Mate Today 64:1587–1596. https://doi.org/10.1016/j.matpr.2022.03.092

    Article  CAS  Google Scholar 

  30. Dogra I, Kumar BR, Etika KC, Chavali M, Khalifa AS, Gharib AF, El Askary A (2022) Environmentally friendly low-cost graphene oxide-cellulose nanocomposite filter for dye removal from water. J. King Saud Univ. Sci 34:102122. https://doi.org/10.1016/j.jksus.2022.102122

    Article  Google Scholar 

  31. Ruchi N, Bamne J, Singh N, Sharma PK, Singh P, Umar A, Haque FZ (2022) Synthesis of titania/silica nanocomposite for enhanced photodegradation of methylene blue and methyl orange dyes under UV and mercury lights. ES Mater Manuf 16:78–88. https://doi.org/10.30919/esmm5f628

    Article  CAS  Google Scholar 

  32. Saeed M, Khan I, Adeel M, Akram N, Muneer M (2022) Synthesis of a CoO–ZnO photocatalyst for enhanced visible-light assisted photodegradation of methylene blue. New J Chem 46:2224–2231. https://doi.org/10.1039/D1NJ05633F

    Article  CAS  Google Scholar 

  33. Gzara L, Rehan ZA, Khan SB et al (2016) Preparation and characterization of PES-cobalt nanocomposite membranes with enhanced anti-fouling properties and performances. J Taiwan Inst Chem Eng 65:405–419. https://doi.org/10.1016/j.jtice.2016.04.012

    Article  CAS  Google Scholar 

  34. Catanzano O, Gomez d’Ayala G, D’Agostino A et al (2021) PEG-crosslinked-chitosan hydrogel films for in situ delivery of opuntia ficus-indica extract. Carbohyd Polym 264:117987. https://doi.org/10.1016/j.carbpol.2021.117987

    Article  CAS  Google Scholar 

  35. Munim SA, Saddique MT, Raza ZA et al (2020) Fabrication of cellulose-mediated chitosan adsorbent beads and their surface chemical characterization. Polym Bull 77:183–196. https://doi.org/10.1007/s00289-019-02711-4

    Article  CAS  Google Scholar 

  36. Huang J, Qin J, Zhang P et al (2020) Facile preparation of a strong chitosan-silk biocomposite film. Carbohyd Polym 229:115515. https://doi.org/10.1016/j.carbpol.2019.115515

    Article  CAS  Google Scholar 

  37. Almasi H, Mehryar L, Ghadertaj A (2019) Characterization of CuO-bacterial cellulose nanohybrids fabricated by in-situ and ex-situ impregnation methods. Carbohyd Polym 222:114995. https://doi.org/10.1016/j.carbpol.2019.114995

    Article  CAS  Google Scholar 

  38. Pereira IC, Duarte AS, Neto AS (2019) Chitosan and polyethylene glycol based membranes with antibacterial properties for tissue regeneration. Mater Sci Eng C 96:606–615. https://doi.org/10.1016/j.msec.2018.11.029

    Article  CAS  Google Scholar 

  39. Zhan J, He F, Chen S et al (2021) Preparation and antibacterial activity of thermo-responsive nanohydrogels from Qiai essential oil and pluronic F108. Molecules 26:5771. https://doi.org/10.3390/molecules26195771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Memar M, Rezvani AR, Saheli S (2021) Synthesis, characterization, and application of CuO nanoparticle 2D doped with Zn2+ against photodegradation of organic dyes (MB & MO) under sunlight. J Mater Sci Mater Electron 32:2127–2145. https://doi.org/10.1007/s10854-020-04979-z

    Article  CAS  Google Scholar 

  41. Sathiyavimal S, Vasantharaj S, Kaliannan T et al (2020) Eco-biocompatibility of chitosan coated biosynthesized copper oxide nanocomposite for enhanced industrial (Azo) dye removal from aqueous solution and antibacterial properties. Carbohyd Polym 241:116243. https://doi.org/10.1016/j.carbpol.2020.116243

    Article  CAS  Google Scholar 

  42. Aradmehr A, Javanbakht V (2020) A novel biofilm based on lignocellulosic compounds and chitosan modified with silver nanoparticles with multifunctional properties: synthesis and characterization. Colloids Surf Physicochem Eng Asp 600:124952. https://doi.org/10.1016/j.colsurfa.2020.124952

    Article  CAS  Google Scholar 

  43. Aljuhani A, Riyadh SM, Khalil KD (2021) Chitosan/CuO nanocomposite films mediated regioselective synthesis of 1,3,4-trisubstituted pyrazoles under microwave irradiation. J Saudi Chem Soc 25:101276. https://doi.org/10.1016/j.jscs.2021.101276

    Article  CAS  Google Scholar 

  44. Gamboa-Solana CD, Chuc-Gamboa MG, Aguilar-Pérez FJ et al (2021) Zinc oxide and copper chitosan composite films with antimicrobial activity. Polym (Basel) 3:3861. https://doi.org/10.3390/polym13223861

    Article  CAS  Google Scholar 

  45. Fathi M, Samadi M, Abbaszadeh S, Nourani MR (2022) Fabrication and characterization of multifunctional bio-safe films based on carboxymethyl chitosan and saffron petal anthocyanin reinforced with copper oxide nanoparticles for sensing the meat freshness. J Polym Environ 18:1–12. https://doi.org/10.1007/s10924-022-02490-6

    Article  CAS  Google Scholar 

  46. Kanavi PS, Meti S, Fattepur RH, Patil VB (2022) Influence of copper oxide nanoparticles on AC conductivity of polyvinyl alcohol-polyaniline polymer blends. J. Electron. Mater. 20:1–12. https://doi.org/10.1007/s11664-022-09798-y

    Article  CAS  Google Scholar 

  47. Elizalde CNB, Al-Gharabli S, Kujawa J et al (2018) Fabrication of blend polyvinylidene fluoride/chitosan membranes for enhanced flux and fouling resistance. Sep Purif Technol 190:68–76. https://doi.org/10.1016/j.seppur.2017.08.053

    Article  CAS  Google Scholar 

  48. Rekik SB, Gassara S, Bouaziz J et al (2019) Enhancing hydrophilicity and permeation flux of chitosan/kaolin composite membranes by using polyethylene glycol as porogen. Appl Clay Sci 168:312–323. https://doi.org/10.1016/j.clay.2018.11.029

    Article  CAS  Google Scholar 

  49. Rao KK, Reddy PR, Lee Y-I et al (2012) Synthesis and characterization of chitosan–PEG-Ag nanocomposites for antimicrobial application. Carbohyd Polym 87:920–925. https://doi.org/10.1016/j.carbpol.2011.07.028

    Article  CAS  Google Scholar 

  50. Hieu VQ, Phung TK, Nguyen TQ et al (2021) Photocatalytic degradation of methyl orange dye by Ti3C2-TiO2 heterojunction under solar light. Chemosphere 276:130154. https://doi.org/10.1016/j.chemosphere.2021.130154

    Article  CAS  PubMed  Google Scholar 

  51. Sanad MMS, Farahat MM, El-Hout SI et al (2021) Preparation and characterization of magnetic photocatalyst from the banded iron formation for effective photodegradation of methylene blue under UV and visible illumination. J Environ Chem Eng 9:105127. https://doi.org/10.1016/j.jece.2021.105127

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors acknowledge the financial support from the Higher Education Commission of Pakistan for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zulfiqar Ali Raza.

Ethics declarations

Conflict of interest

The authors declare no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raza, Z.A., Mobeen, A., Rehman, M.S.u. et al. Synthesis of copper oxide nanoparticles embedded in porous chitosan membrane for photodegradation of organic dyes. Polym. Bull. 80, 11031–11047 (2023). https://doi.org/10.1007/s00289-022-04582-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-022-04582-8

Keywords

Navigation