Skip to main content
Log in

Chitosan Based Polymer Membrane Modified with CuO/Graphene Oxide Nanoparticles: Novel Synthesis, Characterization and Enhanced Methyl Orange Removal

  • Research
  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

This study developed a novel nanocomposite by blending Chitosan and Polyvinyl Alcohol (Ch/PVA) with 1% Copper Oxide nanoparticles (CuO NPs), cross-linked using tetraethyl orthosilicate (TEOS). Three Ch/PVA-based nanocomposites were synthesized using CuO, Graphene Oxide (GO), and a CuO&GO combination. The research aimed to assess the nanocomposites’ efficacy in removing methyl orange (MO) dye. The X-ray diffraction analysis revealed that the fabricated CuO NPs had a monoclinic structure with an average particle size of 16.35 nm. The distinctive bands at 3222 cm−1 for the Ch/PVA composite were confirmed by Fourier-transform infrared spectroscopy (FT-IR). Scanning Electron Microscopy (SEM) results confirmed the NPs were well distributed throughout the matrix and Thermal gravimetric analysis (TGA) verified the stability of chitosan till 350 °C. The sorption experiments with methyl orange dye were carried out under different pH (2–12), dye concentration (0.025–1.0 mML−1), contact time (0–60 min), and temperature (25–55 °C) to establish the adsorbent at the lab-scale. UV–vis results showed the maximum sorption capacity (72 mM/g) achieved within 10 min with 96% dye removal. The adsorption behavior of nanocomposites was attributed to a physicochemical and monolayer adsorption process. Thermodynamic studies at 328 K confirmed that the adsorption process was spontaneous with ΔG° value − 4.2 KJmol−1. Also, ΔH° and ΔS° were found to be 11.3 and 52.2 KJmol−1 for MO adsorption, respectively. This work paves a new route for developing biodegradable, nontoxic, cost-effective, eco-friendly, and highly efficient adsorbents capable of selectively removing and recycling anionic dyes from wastewater.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

No datasets were generated or analysed during the current study.

References

  1. T.A. Saleh, N.P. Shetti, M.M. Shanbhag, K.R. Reddy, T.M. Aminabhavi, Recent trends in functionalized nanoparticles loaded polymeric composites: an energy application. Mater. Sci. Energy Technol. 3, 515–525 (2020). https://doi.org/10.1016/j.mset.2020.05.005

    Article  CAS  Google Scholar 

  2. I.Y. Jeon, J.B. Baek, Nanocomposites derived from polymers and inorganic nanoparticles. Materials. 3(6), 3654–3674 (2010). https://doi.org/10.3390/ma3063654

    Article  ADS  CAS  PubMed Central  Google Scholar 

  3. M.Z. Rong, M.Q. Zhang, Y.X. Zheng, H.M. Zeng, K. Friedrich, Improvement of tensile properties of nano-SiO2/PP composites in relation to percolation mechanism. Polymer. 42(7), 3301–3304 (2001). https://doi.org/10.1016/S0032-3861(00)00741-2

    Article  CAS  Google Scholar 

  4. S. Kango, S. Kalia, A. Celli, J. Njuguna, Y. Habibi, R. Kumar, Surface modification of inorganic nanoparticles for development of organic–inorganic nanocomposites—A review. Prog. Polym. Sci. 38(8), 1232–1261 (2013). https://doi.org/10.1016/j.progpolymsci.2013.02.003

    Article  CAS  Google Scholar 

  5. T. Sun, J.M. Garces, High-performance polypropylene–clay nanocomposites by In‐situ polymerization with Metallocene/Clay catalysts. Adv. Mater. 14(2), 128–130 (2002). https://doi.org/10.1002/1521-4095(20020116)14. :2%3C128::AID-ADMA128%3E3.0.CO;2-7

    Article  CAS  Google Scholar 

  6. J. Luna, A. Vílchez, (2017). Polymer nanocomposites for food packaging. In Emerging nanotechnologies in food science. Elsevier, Amsterdam, pp 119–147 https://doi.org/10.1016/B978-0-323-42980-1.00007-8

  7. K.K. Sadasivuni, D. Ponnamma, M. Rajan, B. Ahmed, M.A.S. Al-Maadeed (eds.), Polymer nanocomposites in biomedical engineering (Springer, Heidelberg, 2019).

    Book  Google Scholar 

  8. L. Tamayo, M. Azócar, M. Kogan, A. Riveros, M. Páez, Copper-polymer nanocomposites: an excellent and cost-effective biocide for use on antibacterial surfaces. Mater. Sci. Engineering: C 69, 1391–1409 (2016). https://doi.org/10.1016/j.msec.2016.08.041

    Article  CAS  Google Scholar 

  9. L. Flandin, Y. Brechet, J.Y. Cavaillé, Electrically conductive polymer nanocomposites as deformation sensors. Compos. Sci. Technol. 61(6), 895–901 (2001). https://doi.org/10.1016/S0266-3538(00)00175-5

    Article  CAS  Google Scholar 

  10. A. Nasir, F. Masood, T. Yasin, A. Hameed, Progress in polymeric nanocomposite membranes for wastewater treatment: Preparation, properties and applications. J. Ind. Eng. Chem. 79, 29–40 (2019). https://doi.org/10.1016/j.jiec.2019.06.052

    Article  CAS  Google Scholar 

  11. C. Tang, N. Chen, Q. Zhang, K. Wang, Q. Fu, X. Zhang, Preparation and properties of chitosan nanocomposites with nanofillers of different dimensions. Polym. Degrad. Stab. 94(1), 124–131 (2009). https://doi.org/10.1016/j.polymdegradstab.2008.09.008

    Article  CAS  Google Scholar 

  12. A.H. Jawad, N. Shazwani, A. Mubarak, S. Sabar, Adsorption and mechanism study for reactive red 120 dye removal by cross-linked chitosan-epichlorohydrin biobeads. Compos. Part. B Eng. 75, 415–418 (2019). https://doi.org/10.5004/dwt.2019.24438

    Article  CAS  Google Scholar 

  13. A.A. Mansur, F.P. Ramanery, L.C. Oliveira, H.S. Mansur, Carboxymethyl Chitosan functionalization of Bi2S3 quantum dots: towards eco-friendly fluorescent core-shell nanoprobes. Carbohydr. Polym. 146, 455–466 (2016). https://doi.org/10.1016/j.carbpol.2016.03.062

    Article  CAS  PubMed  Google Scholar 

  14. M.A. Nawi, A.H. Jawad, S. Sabar, W.W. Ngah, Photocatalytic-oxidation of solid state chitosan by immobilized bilayer assembly of TiO2–chitosan under a compact household fluorescent lamp irradiation. Carbohydr. Polym. 83(3), 1146–1152 (2011). https://doi.org/10.1016/j.carbpol.2010.09.044

    Article  CAS  Google Scholar 

  15. S. Sarode, P. Upadhyay, M.A. Khosa, T. Mak, A. Shakir, S. Song, A. Ullah, Overview of wastewater treatment methods with special focus on biopolymer chitin-chitosan. Int. J. Biol. Macromol. 121, 1086–1100 (2019). https://doi.org/10.1016/j.ijbiomac.2018.10.089

    Article  CAS  PubMed  Google Scholar 

  16. Z.I. Abdeen, E. Farargy, A. F., N.A. Negm, Nanocomposite framework of chitosan/polyvinyl alcohol/ZnO: Preparation, characterization, swelling and antimicrobial evaluation. J. Mol. Liq. 250, 335–343 (2018). https://doi.org/10.1016/j.molliq.2017.12.032

    Article  CAS  Google Scholar 

  17. A.H. Jawad, M.A. Nawi, Oxidation of cross-linked chitosan-epichlorohydrine film and its application with TiO2 for phenol removal. Carbohydr. Polym. 90(1), 87–94 (2012). https://doi.org/10.1016/j.carbpol.2012.04.066

    Article  CAS  PubMed  Google Scholar 

  18. M. Shafiq, A. Sabir, A. Islam, S.M. Khan, S.N. Hussain, M.T.Z.Z. Butt, T. Jamil, Development and performance characteristics of silane cross-linked poly (vinyl alcohol)/chitosan membranes for reverse osmosis. J. Ind. Eng. Chem. 48, 99–107 (2017). https://doi.org/10.1016/j.jiec.2016.12.025

    Article  CAS  Google Scholar 

  19. Q. Yu, Y. Song, X. Shi, C. Xu, Y. Bin, Preparation and properties of chitosan derivative/poly (vinyl alcohol) blend film cross-linked with glutaraldehyde. Carbohydr. Polym. 84(1), 465–470 (2011). https://doi.org/10.1016/j.carbpol.2010.12.006

    Article  CAS  Google Scholar 

  20. M. Zakeri, H. Mobedi, J. Barzin, A. Jamshidi, A. Mashak, Development of chitosan beads for controlled release of dexamethasone prepared by co-axial needle method. J. Polym. Res. 27, 1–11 (2020). https://doi.org/10.1007/s10965-020-02232-z

    Article  CAS  Google Scholar 

  21. T. Thanyacharoen, P. Chuysinuan, S. Techasakul, P. Nooeaid, S. Ummartyotin, Development of a gallic acid-loaded chitosan and polyvinyl alcohol hydrogel composite: release characteristics and antioxidant activity. Int. J. Biol. Macromol. 107, 363–370 (2018). https://doi.org/10.1016/j.ijbiomac.2017.09.002

    Article  CAS  PubMed  Google Scholar 

  22. M.M. Hasan, M.L. Habib, M. Anwaruzzaman, M. Kamruzzaman, M.N. Khan, M.M. Rahman, (2020). Processing techniques of chitosan-based interpenetrating polymer networks, gels, blends, composites and nanocomposites. In Handbook of Chitin and Chitosan (pp. 61–93). Elsevier, Amsterdam https://doi.org/10.1016/B978-0-12-817968-0.00003-2

  23. A.C.M. Oliveira, M.S. Santos, L.M. Brandão, N. Yerga, R.M. Fierro, J.L.G. Leite, M.S. Figueiredo, Chitosan-modified TiO2 as photocatalyst for ethanol reforming under visible light. Chem. Pap. 71, 1129–1141 (2017). https://doi.org/10.1007/s11696-016-0095-2

    Article  CAS  Google Scholar 

  24. M. Aslam, Z.A. Raza, A. Siddique, Fabrication and chemo-physical characterization of CuO/chitosan nanocomposite-mediated tricomponent PVA films. Polym. Bull. 78, 1955–1965 (2021). https://doi.org/10.1007/s00289-020-03194-4

    Article  CAS  Google Scholar 

  25. A. Thekkedath, S. Sugaraj, K. Sridharan, (2022). Nanomaterials in advanced oxidation processes (AOPs) in anionic dye removal. Advanced Oxidation Processes in Dye-Containing Wastewater: Volume 1 (129–165). Singapore: Springer Nature Singapore. https://doi.org/10.1007/978-981-19-0987-0_7

    Chapter  Google Scholar 

  26. V. Sharma, T. Shahnaz, S. Subbiah, S. Narayanasamy, New insights into the remediation of water pollutants using nanobentonite incorporated nanocellulose chitosan based aerogel. J. Polym. Environ. 28, 2008–2019 (2020). https://doi.org/10.1007/s10924-020-01740-9

    Article  CAS  Google Scholar 

  27. B. Tanhaei, A. Ayati, M. Sillanpää, Magnetic xanthate modified Chitosan as an emerging adsorbent for cationic azo dyes removal: kinetic, thermodynamic and isothermal studies. Int. J. Biol. Macromol. 121, 1126–1134 (2019). https://doi.org/10.1016/j.ijbiomac.2018.10.137

    Article  CAS  PubMed  Google Scholar 

  28. S. Wong, N.A.N. Yac’cob, N. Ngadi, O. Hassan, I.M. Inuwa, From pollutant to solution of wastewater pollution: synthesis of activated carbon from textile sludge for dye adsorption. Chin. J. Chem. Eng. 26(4), 870–878 (2018). https://doi.org/10.1016/j.cjche.2017.07.015

    Article  CAS  Google Scholar 

  29. M.F. Hanafi, N. Sapawe, A review on the water problem associate with organic pollutants derived from phenol, methyl orange, and remazol brilliant blue dyes. Mater. Today: Proc. 31, A141–A150 (2020)

    Google Scholar 

  30. R. Raliya, C. Avery, S. Chakrabarti, P. Biswas, Photocatalytic degradation of methyl orange dye by pristine titanium dioxide, zinc oxide, and graphene oxide nanostructures and their composites under visible light irradiation. Appl. Nanosci. 7, 253–259 (2017). https://doi.org/10.1007/s13204-017-0565-z

    Article  ADS  CAS  Google Scholar 

  31. C.F. Carolin, P.S. Kumar, G.J. Joshiba, Sustainable approach to decolourize methyl orange dye from aqueous solution using novel bacterial strain and its metabolites characterization. Clean Technol. Environ. Policy. 23, 173–181 (2021). https://doi.org/10.1007/s10098-020-01934-8

    Article  CAS  Google Scholar 

  32. U. Habiba, T.A. Siddique, J.J.L. Lee, T.C. Joo, B.C. Ang, A.M. Afifi, Adsorption study of methyl orange by chitosan/polyvinyl alcohol/zeolite electrospun composite nanofibrous membrane. Carbohydr. Polym. 191, 79–85 (2018). https://doi.org/10.1016/j.carbpol.2018.02.081

    Article  CAS  PubMed  Google Scholar 

  33. U. Habiba, T.A. Siddique, T.C. Joo, A. Salleh, B.C. Ang, A.M. Afifi, Synthesis of chitosan/polyvinyl alcohol/zeolite composite for removal of methyl orange, Congo Red and chromium (VI) by flocculation/adsorption. Carbohydr. Polym. 157, 1568–1576 (2017). https://doi.org/10.1016/j.carbpol.2016.11.037

    Article  CAS  PubMed  Google Scholar 

  34. J. Liu, J. Xiong, C. Tian, B. Gao, L. Wang, X. Jia, The degradation of methyl orange and membrane fouling behavior in anaerobic baffled membrane bioreactor. Chem. Eng. J. 338, 719–725 (2018). https://doi.org/10.1016/j.cej.2018.01.052

    Article  CAS  Google Scholar 

  35. A.T. Mohammad, A.S. Abdulhameed, A.H. Jawad, Box-Behnken design to optimize the synthesis of new cross-linked chitosan-glyoxal/TiO2 nanocomposite: methyl orange adsorption and mechanism studies. Int. J. Biol. Macromol. 129, 98–109 (2019). https://doi.org/10.1016/j.ijbiomac.2019.02.025

    Article  CAS  PubMed  Google Scholar 

  36. L. Ai, J. Jiang, Removal of methylene blue from aqueous solution with self-assembled cylindrical graphene–carbon nanotube hybrid. Chem. Eng. J. 192, 156–163 (2012). https://doi.org/10.1016/j.cej.2012.03.056

    Article  CAS  Google Scholar 

  37. M.F. Ahmad, S. Hassan, Z. Imran, D. Mazhar, S. Afzal, S.A. Ullah, Green approach to water purification: investigating methyl orange dye adsorption using chitosan/polyethylene glycol composite membrane. J. Polym. Environ. 32, 1–19 (2023). https://doi.org/10.1007/s10924-023-02994-9

    Article  CAS  Google Scholar 

  38. M. Patel, S. Mishra, R. Verma, D. Shikha, Synthesis of ZnO and CuO nanoparticles via Sol gel method and its characterization by using various technique. Discover Mater. 2(1), 1 (2022). https://doi.org/10.1007/s43939-022-00022-6

    Article  ADS  Google Scholar 

  39. Z. Alhalili, Green synthesis of copper oxide nanoparticles CuO NPs from Eucalyptus Globoulus leaf extract: Adsorption and design of experiments. Arab. J. Chem. 15(5), 103739 (2022). https://doi.org/10.1016/j.arabjc.2022.103739

    Article  CAS  Google Scholar 

  40. N. Nasikhudin, I. Puspitasari, M. Diantoro, A. Kusumaatmaja, K. Triyana, Effect of blend ratio on morphology and swelling properties of PVA/chitosan nanofibers. Mater. Sci. Forum 901, 79–84 (2017)

    Article  Google Scholar 

  41. S. Kumar, B. Krishnakumar, A.J. Sobral, J. Koh, Bio-based (chitosan/PVA/ZnO) nanocomposites film: thermally stable and photoluminescence material for removal of organic dye. Carbohydr. Polym. 205, 559–564 (2019). https://doi.org/10.1016/j.carbpol.2018.10.108

    Article  CAS  PubMed  Google Scholar 

  42. K.S. Venkataprasanna, J. Prakash, S. Vignesh, G. Bharath, M. Venkatesan, F. Banat, G.D. Venkatasubbu, Fabrication of Chitosan/PVA/GO/CuO patch for potential wound healing application. Int. J. Biol. Macromol. 143, 744–762 (2020). https://doi.org/10.1016/j.ijbiomac.2019.10.029

    Article  CAS  PubMed  Google Scholar 

  43. A. Islam, T. Yasin, I. Bano, M. Riaz, Controlled release of aspirin from pH-sensitive chitosan/poly (vinyl alcohol) hydrogel. J. Appl. Polym. Sci. 124(5), 4184–4192 (2012). https://doi.org/10.1002/app.35392

    Article  CAS  Google Scholar 

  44. A. Pawlak, M. Mucha, Thermogravimetric and FTIR studies of chitosan blends. Thermochim. Acta. 396(1–2), 153–166 (2003). https://doi.org/10.1016/S0040-6031(02)00523-3

    Article  CAS  Google Scholar 

  45. Y. Zhou, S. Fu, L. Zhang, H. Zhan, M.V. Levit, Use of carboxylated cellulose nanofibrils-filled magnetic chitosan hydrogel beads as adsorbents for pb (II). Carbohydr. Polym. 101, 75–82 (2014). https://doi.org/10.1016/j.carbpol.2013.08.055

    Article  CAS  PubMed  Google Scholar 

  46. C.D.T. Neto, J.A. Giacometti, A.E. Job, F.C. Ferreira, J.L.C. Fonseca, M.R. Pereira, Thermal analysis of Chitosan based networks. Carbohydr. Polym. 62(2), 97–103 (2005). https://doi.org/10.1016/j.carbpol.2005.02.022

    Article  CAS  Google Scholar 

  47. P. Khare, A. Yadav, J. Ramkumar, N. Verma, Microchannel-embedded metal–carbon–polymer nanocomposite as a novel support for chitosan for efficient removal of hexavalent chromium from water under dynamic conditions. Chem. Eng. J. 293, 44–54 (2016). https://doi.org/10.1016/j.cej.2016.02.049

    Article  CAS  Google Scholar 

  48. D.D. Kachhadiya, Z.V.P. Murthy, Graphene oxide modified CuBTC incorporated PVDF membranes for saltwater desalination via pervaporation. Sep. Purif. Technol. 290, 120888 (2022). https://doi.org/10.1016/j.seppur.2022.120888

    Article  CAS  Google Scholar 

  49. S.K. Balasubramanian, L. Yang, L.Y.L. Yung, C.N. Ong, W.Y. Ong, E.Y. Liya, Characterization, purification, and stability of gold nanoparticles. Biomaterials. 31(34), 9023–9030 (2010). https://doi.org/10.1016/j.biomaterials.2010.08.012

    Article  CAS  PubMed  Google Scholar 

  50. L. Miao, C. Wang, J. Hou, P. Wang, Y. Ao, Y. Li, Y. Xu, Enhanced stability and dissolution of CuO nanoparticles by extracellular polymeric substances in aqueous environment. J. Nanopart. Res. 17, 1–12 (2015). https://doi.org/10.1007/s11051-015-3208-x

    Article  CAS  Google Scholar 

  51. E. Dražević, K. Košutić, V. Freger, Permeability and selectivity of reverse osmosis membranes: correlation to swelling revisited. Water Res. 49, 444–452 (2014). https://doi.org/10.1016/j.watres.2013.10.029

    Article  CAS  PubMed  Google Scholar 

  52. N. Gull, S.M. Khan, O.M. Butt, A. Islam, A. Shah, S. Jabeen, M.T.Z. Butt, Inflammation targeted Chitosan-based hydrogel for controlled release of diclofenac sodium. Int. J. Biol. Macromol. 162, 175–187 (2020). https://doi.org/10.1016/j.ijbiomac.2020.06.133

    Article  CAS  PubMed  Google Scholar 

  53. N. Gull, S.M. Khan, M.T.Z. Butt, S. Khalid, M. Shafiq, A. Islam, R.U. Khan, In vitro study of chitosan-based multi-responsive hydrogels as drug release vehicles: a preclinical study. RSC Adv. 9(53), 31078–31091 (2019). https://doi.org/10.1039/C9RA05025F

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  54. A. Rasool, S. Ata, A. Islam, Stimuli responsive biopolymer (chitosan) based blend hydrogels for wound healing application. Carbohydr. Polym. 203, 423–429 (2019). https://doi.org/10.1016/j.carbpol.2018.09.083

    Article  CAS  PubMed  Google Scholar 

  55. E.N. Zare, A. Motahari, M. Sillanpää, Nanoadsorbents based on conducting polymer nanocomposites with main focus on polyaniline and its derivatives for removal of heavy metal ions/dyes: a review. Environ. Res. 162, 173–195 (2018). https://doi.org/10.1016/j.envres.2017.12.025

    Article  CAS  PubMed  Google Scholar 

  56. X. Xu, M. Tian, L. Qu, S. Zhu, Graphene Oxide/Chitosan/Polyvinyl-Alcohol composite sponge as effective adsorbent for dyes. Water Environ. Res. 89(6), 555–563 (2017). https://doi.org/10.2175/106143016X14609975746127

    Article  CAS  PubMed  Google Scholar 

  57. N. Mohammadi, H. Khani, V.K. Gupta, E. Amereh, S. Agarwal, Adsorption process of methyl orange dye onto mesoporous carbon material–kinetic and thermodynamic studies. J. Colloid Interface Sci. 362(2), 457–462 (2011). https://doi.org/10.1016/j.jcis.2011.06.067

    Article  ADS  CAS  PubMed  Google Scholar 

  58. S. Rahim, R. Ullah, M. Tuzen, S. Ullah, A. Sarı, T.A. Saleh, Synthesis of alumina-carbon framework for efficient sorption of methyl orange from wastewater with factorial design and mechanisms. Groundw. Sustainable Dev. 22, 100950 (2023). https://doi.org/10.1016/j.gsd.2023.100950

    Article  Google Scholar 

  59. L. Hou, X. Zhang, H. Liu, H. Zheng, B. Niu, J. Zheng, J. Fu, Rigid-flexible coupled polyphosphazene supported polyurethane foam for efficient and selective adsorption of anionic dyes from water. Colloids Surf., a 669, 131483 (2023). https://doi.org/10.1016/j.colsurfa.2023.131483

    Article  CAS  Google Scholar 

  60. O. Moradi, A. Pudineh, S. Sedaghat, Synthesis and characterization Agar/GO/ZnO NPs nanocomposite for removal of methylene blue and methyl orange as azo dyes from food industrial effluents. Food Chem. Toxicol. 169, 113412 (2022). https://doi.org/10.1016/j.fct.2022.113412

    Article  CAS  PubMed  Google Scholar 

  61. A.H. Faris, K.J. Hamid, A.M. Naji, M.K. Mohammed, O.A. Nief, M.S. Jabir, Novel Mo-doped WO3/ZnO nanocomposites loaded with polyvinyl alcohol towards efficient visible-light-driven photodegradation of methyl orange. Mater. Lett. 334, 133746 (2023). https://doi.org/10.1016/j.matlet.2022.133746

    Article  CAS  Google Scholar 

  62. B.S. Rathore, N.P.S. Chauhan, M.K. Rawal, S.C. Ameta, R. Ameta, Chitosan–polyaniline–copper (II) oxide hybrid composite for the removal of methyl orange dye. Polym. Bull. 77(9), 4833–4850 (2020). https://doi.org/10.1007/s00289-019-02994-7

    Article  CAS  Google Scholar 

  63. H. Ali, T.M. Tiama, A.M. Ismail, New and efficient NiO/chitosan/polyvinyl alcohol nanocomposites as antibacterial and dye adsorptive films. Int. J. Biol. Macromol. 186, 278–288 (2021). https://doi.org/10.1016/j.ijbiomac.2021.07.055

    Article  CAS  PubMed  Google Scholar 

  64. S. Kader, M.R. Al-Mamun, M.B.K. Suhan, S.B. Shuchi, M.S. Islam, Enhanced photodegradation of methyl orange dye under UV irradiation using MoO3 and ag doped TiO2 photocatalysts. Environ. Technol. Innov. 27, 102476 (2022). https://doi.org/10.1016/j.eti.2022.102476

    Article  CAS  Google Scholar 

  65. S. Yildirim, B. Isik, V. Ugraskan, Methyl orange dye sequestration using polyaniline nanotube-filled sodium alginate bio-composite microbeads. Mater. Chem. Phys. (2023). 128083https://doi.org/10.1016/j.matchemphys.2023.128083

    Article  Google Scholar 

  66. A.A. Hambisa, M.B. Regasa, H.G. Ejigu, C.B. Senbeto, Adsorption studies of methyl orange dye removal from aqueous solution using Anchote peel-based agricultural waste adsorbent. Appl. Water Sci. 13(1), 24 (2023). https://doi.org/10.1007/s13201-022-01832-y

    Article  ADS  CAS  Google Scholar 

  67. L. You, C. Huang, F. Lu, A. Wang, X. Liu, Q. Zhang, Facile synthesis of high performance porous magnetic chitosan-polyethylenimine polymer composite for Congo red removal. Int. J. Biol. Macromol. 107, 1620–1628 (2018). https://doi.org/10.1016/j.ijbiomac.2017.10.025

    Article  CAS  PubMed  Google Scholar 

  68. X. Jiao, Y. Gutha, W. Zhang, Application of chitosan/poly (vinyl alcohol)/CuO (CS/PVA/CuO) beads as an adsorbent material for the removal of pb (II) from aqueous environment. Colloids Surf., B 149, 184–195 (2017). https://doi.org/10.1016/j.colsurfb.2016.10.024

    Article  CAS  Google Scholar 

  69. E.H. Cavalcante, I.C. Candido, H.P. de Oliveira, K.B. Silveira, Víctor. de Souza, T. Álvares, E.C. Lima, G. Simões Dos Reis, 3-Aminopropyl-triethoxysilane-functionalized tannin-rich grape biomass for the adsorption of methyl orange dye: synthesis, characterization, and the adsorption mechanism. ACS omega 7(22), 18997–19009 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. T.A. Saleh, Nanocomposite of carbon nanotubes/silica nanoparticles and their use for adsorption of pb (II): from surface properties to sorption mechanism. Desalination Water Treat. 57(23), 10730–10744 (2016). https://doi.org/10.1080/19443994.2015.1036784

    Article  MathSciNet  CAS  Google Scholar 

  71. T.A. Saleh, (2022). Kinetic models and thermodynamics of adsorption processes: classification. In Interface Science and Technology (Vol. 34, pp. 65–97). Elsevier, Amsterdam. https://doi.org/10.1016/B978-0-12-849876-7.00003-8

  72. A. Villabona-Ortíz, C.N. Tejada-Tovar, R. Ortega-Toro, Modelling of the adsorption kinetics of chromium (VI) using waste biomaterials. Revista Mexicana De Ingeniería Química. 19(1), 401–408 (2020). https://doi.org/10.24275/rmiq/IA650

    Article  Google Scholar 

  73. K. Kaur, R. Jindal, Self-assembled GO incorporated CMC and Chitosan-based nanocomposites in the removal of cationic dyes. Carbohydr. Polym. 225, 115245 (2019). https://doi.org/10.1016/j.carbpol.2019.115245

    Article  CAS  PubMed  Google Scholar 

  74. I. Langmuir, The adsorption of gases on plane surfaces of glass, mica and platinum. J. Am. Chem. Soc. 40(9), 1361–1403 (1918). https://doi.org/10.1021/ja02242a004

    Article  CAS  Google Scholar 

  75. S. Asuha, X.G. Zhou, S. Zhao, Adsorption of methyl orange and cr (VI) on mesoporous TiO2 prepared by hydrothermal method. J. Hazard. Mater. 181(1–3), 204–210 (2010). https://doi.org/10.1016/j.jhazmat.2010.04.117

    Article  CAS  PubMed  Google Scholar 

  76. T. Ahamad, M. Naushad, T. Al-Shahrani, N. Al-Hokbany, S.M. Alshehri, Preparation of Chitosan based magnetic nanocomposite for tetracycline adsorption: kinetic and thermodynamic studies. Int. J. Biol. Macromol. 147, 258–267 (2020). https://doi.org/10.1016/j.ijbiomac.2020.01.025

    Article  CAS  PubMed  Google Scholar 

  77. F. Ali, N. Ali, I. Bibi, A. Said, S. Nawaz, Z. Ali, M. Bilal, Adsorption isotherm, kinetics and thermodynamic of acid blue and basic blue dyes onto activated charcoal. Case Stud. Chem. Environ. Eng. 2, 100040 (2020)

    Article  Google Scholar 

  78. J. Wang, X. Guo, Adsorption isotherm models: classification, physical meaning, application and solving method. Chemosphere. 258, 127279 (2020). https://doi.org/10.1016/j.chemosphere.2020.127279

    Article  CAS  PubMed  Google Scholar 

  79. X. Chen, M.F. Hossain, C. Duan, J. Lu, Y.F. Tsang, M.S. Islam, Y. Zhou, Isotherm models for adsorption of heavy metals from water-A review. Chemosphere 307, 135545 (2022). https://doi.org/10.1016/j.chemosphere.2022.135545

    Article  CAS  PubMed  Google Scholar 

  80. B. Tanhaei, A. Ayati, E. Iakovleva, M. Sillanpää, Efficient carbon interlayed magnetic chitosan adsorbent for anionic dye removal: synthesis, characterization and adsorption study. Int. J. Biol. Macromol. 164, 3621–3631 (2020). https://doi.org/10.1016/j.ijbiomac.2020.08.207

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank the chemistry department and physics department of COMSATS University Islamabad for their invaluable support throughout our research journey. Also, we would like to extend our sincere appreciation to the Sensing and Catalysis Lab (COMSATS University Islamabad) for their invaluable support and collaboration throughout this research work. Thank you, COMSATS University Islamabad, for being such an integral part of this endeavor.

Funding

There is no funding found with authors.

Author information

Authors and Affiliations

Authors

Contributions

Sumra Afzal: Designing of experiment, synthesis of material and Characterization and analysis of the material, Syed Amin Ullah: Figures, review and formal analysis, Zahid Imran and Safia Hassan: Methodology Conceptualization, Writing editing and review, Supervision.

Corresponding authors

Correspondence to Safia Hassan or Zahid Imran.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests that can influence the work reported in this research paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Afzal, S., Hassan, S., Imran, Z. et al. Chitosan Based Polymer Membrane Modified with CuO/Graphene Oxide Nanoparticles: Novel Synthesis, Characterization and Enhanced Methyl Orange Removal. J Inorg Organomet Polym (2024). https://doi.org/10.1007/s10904-024-03008-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10904-024-03008-4

Keywords

Navigation