Skip to main content

Preparation and Application of Chitosan-Based Membrane: Focusing on Dye Removal

  • Chapter
  • First Online:
Membrane Based Methods for Dye Containing Wastewater

Abstract

Water pollution is caused by the direct discharge of harmful dyes into the environment and is a major global problem. Dyes if present in the water can be toxic to the aquatic organisms and humans. Dyes are recalcitrant in nature, and they can resist attack by heat, light, and microorganisms. Hence, most of the reactive dyes are non-biodegradable and their removal from the aqueous solution is very difficult, and therefore, a necessary measure must be applied in order to tackle the existence of the water pollution problem. Adsorption is a well-known technology that is adopted in the academia and industries for removal of dyes from solution. The adsorption of dyes on adsorbents is a simple and economical procedure that is widely used for large and small-scale removal of dyes. In the current chapter, we reviewed the extraction of chitin from the shells of marine animals, the preparation of chitosan by deacetylation reaction, structure and properties of the chitosan biopolymer. Chitosan films could be prepared by casting technology via dissolution of chitosan in a suitable solvent followed by simple evaporation technique. The chapter highlights that chitosan films have superior physicochemical characteristics than raw chitosan biopolymer; the mechanical strength of reported chitosan films might be as high as 28 MPa. Among the different chitosan films, this chapter has comprehensively presented the discussion on preparation, characterization, and dye removal application of various classes of chitosan composite membranes. The tensile strength of chitosan composite film could reach 35 MPa approximately, thus suggesting the composite films based on chitosan could be considered as good adsorbents for dye removals from water. The maximum adsorption capacity (Qmax) of the reviewed composite film could reach 655 mg g−1, but comparatively lower than Qmax of chitosan-magnetic cyclodextrin composite by a mammoth difference of 2125 mg g−1. Both of the chitosan-based composites are recyclable through multiple adsorption–desorption cycles. Despite the good adsorption and regeneration and reuse capabilities of chitosan-based composite films, and in order to enhance their dye removal capacities, the present chapter has strongly recommended further works to explore more of magnetic chitosan-based composite membranes with superior adsorptive behaviors for consideration of future practical dye removal application from wastewater. Finally, the characterizations of such adsorbent systems should be comprehensively investigated before and after dye removal to understand the details on mechanism of the removal of dyes from water.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

AC:

Activated carbon

AFM:

Atomic force microscopy

AR:

Acid red dye

AO:

Acid orange dye

BET:

Brunauer-Emmett-Teller

[Bmim] Ac:

1-Butyl-3-methylimidazolium acetate

BO:

Bezactive Orange

BY:

Brilliant yellow

CA:

Cellulose acetate

CD:

Cyclodextrin

Ce:

Equilibrium dye concentration (mg L1)

CNF:

Cellulose nanofiber

Co:

Initial dye concentration (mg L1)

CSB:

Chitosan/saponin-bentonite composite

CR:

Congo red

Da or u:

Dalton atomic unit

DD:

Degree of deacetylation

DMSO:

Dimethyl sulfoxide

[EMIM] AC:

1-Ethyl-3-methylimidazolium acetate

FD&C:

Food, drugs & cosmetics

FTIR:

Fourier Transform infrared spectroscopy

GO:

Graphene oxide

ILs:

Ionic liquids

IR:

Infrared radiation

K:

Kelvin

Kc:

Equilibrium constant

KL:

Langmuir constant (L g1)

LCTS:

Low molecular weight chitosan

MB:

Methylene blue dye

MG:

Malachite green dye

MgO:

Magnesium oxide

MMT:

Montmorillonite

MO:

Methyl orange

MPa:

Megapascals

MWCNTs:

Multi-walled carbon nanotubes

MW:

Molecular weight (g mol1)

PAA:

Polyacrylic acid

PEG:

Poly (ethylene glycol)

PZC:

Point of zero charge

Qe:

Equilibrium adsorption capacity (mg g1)

Qmax:

Maximum or monolayer adsorption capacity (mg g1)

R:

Molar gas constant (J mol1 K1)

RB:

Reactive blue

RL:

Separation factor (dimensionless)

SEM:

Scanning electron microscopy

T:

Absolute temperature (Kelvin)

TEM:

Transmission electron microscopy

TiO2:

Titanium dioxide

USD:

United State Dollars

W:

Weight (gram)

XRD:

X-ray Diffraction Analysis

ZnO:

Zinc oxide

References

  1. Ngah WW, Teong L, Hanafiah M (2011) Adsorption of dyes and heavy metal ions by chitosan composites: a review. Carbohydr Polym 83(4):1446–1456. https://doi.org/10.1016/j.carbpol.2010.11.004

  2. Aliabadi M, Irani M, Ismaeili J, Najafzadeh S (2014) Design and evaluation of chitosan/hydroxyapatite composite nanofiber membrane for the removal of heavy metal ions from aqueous solution. J Taiwan Inst Chem Eng 45(2):518–526. https://doi.org/10.1016/j.jtice.2013.04.016

    Article  CAS  Google Scholar 

  3. Karim Z, Mathew AP, Grahn M, Mouzon J, Oksman K (2014) Nanoporous membranes with cellulose nanocrystals as functional entity in chitosan: removal of dyes from water. Carbohydr Polym 112:668–676. https://doi.org/10.1016/j.carbpol.2014.06.048

    Article  CAS  Google Scholar 

  4. de Azevedo ACN, Vaz MG, Gomes RF, Pereira AGB, Fajardo AR, Rodrigues FHA (2017) Starch/rice husk ash based superabsorbent composite: high methylene blue removal efficiency. Iran Polym J 26:93–105. https://doi.org/10.1007/s13726-016-0500-2

    Article  CAS  Google Scholar 

  5. Salleh MAM, Mahmoud DK, Abdul Karim WAW, Idris A (2011) Cationic and anionic dye adsorption by agricultural solid wastes: a comprehensive review. Desalination 280:1–13. https://doi.org/10.1016/j.desal.2011.07.019

    Article  CAS  Google Scholar 

  6. Mijinyawa AH, Mishra A, Durga G (2020) Cationic dye removal using a newer material fabricated by Taro Mucilage-g-PLA and Organobentonite clay, Mater Today: proceedings (Available online 27 January 2020). https://doi.org/10.1016/j.matpr.2019.12.345

  7. Bhatnagar A, Sillanpää M (2010) Utilization of agro-industrial and municipal waste materials as potential adsorbents for water treatment—a review. Chem Eng J 157:277–296. https://doi.org/10.1016/j.cej.2010.01.007

    Article  CAS  Google Scholar 

  8. Singh A, Sidhu GK, Singh H (2017) Removal of methylene blue dye using activated carbon prepared from biowaste precursor. Indian Chem Eng 61:28–39. https://doi.org/10.1080/00194506.2017.1408431

    Article  CAS  Google Scholar 

  9. Abolhassani M, Griggs CS, Gurtowski LA, Mattei-Sosa JA, Nevins M, Medina VF, Morgan TA, Greenlee LF (2017) Scalable chitosan-graphene oxide membranes: the effect of GO size on properties and cross-flow filtration performance. ACS Omega 2:8751–8759. https://doi.org/10.1021/acsomega.7b01266

    Article  CAS  Google Scholar 

  10. Zinadini S, Zinatizadeh AA, Rahimi M, Vatanpour V, Zangeneh H, Beygzadeh M (2014) Novel high flux antifouling nanofiltration membranes for dye removal containing carboxymethyl chitosan coated Fe3O4 nanoparticles. Desalination 349:145–154. https://doi.org/10.1016/j.desal.2014.07.007

    Article  CAS  Google Scholar 

  11. Salehi E, Daraei P, Shamsabadi AA (2016) A review on chitosan-based adsorptive membrane. Carbohydr Polym 152:419–432. https://doi.org/10.1016/j.carbpol.2016.07.033

    Article  CAS  Google Scholar 

  12. Islam S, Bhuiyan MAR, Islam MN (2017) Chitin and chitosan: structure, properties and applications in biomedical engineering. J Polym Environ 25:854–866. https://doi.org/10.1007/s10924-016-0865-5

    Article  CAS  Google Scholar 

  13. Kumar GY, Atul GS, Yadav AV (2013) Chitosan and its applications: a review of literature. Int J Res Pharm Biomed Sci 4:312–331

    Google Scholar 

  14. Agarwal M, Agarwal MK, Shrivastav N, Pandey S, Gaur P (2018) A simple and effective method for preparation of chitosan from chitin. Int J Life Sci Sci Res 4(2):1721–1728. https://doi.org/10.21276/ijlssr.2018.4.2.18

    Article  Google Scholar 

  15. Kasaai MR (2009) Various methods for determination of the degree of N-acetylation of chitin and chitosan: a review. J Agric Food Chem 57(5):1667–1676

    Google Scholar 

  16. Aranaz I, Mengíbar M, Harris R, Paños I, Miralles B, Acosta N, Galed G, Heras Á (2009) Functional characterization of chitin and chitosan. Curr Chem Biol 3(2):203–230

    Google Scholar 

  17. Olivera S, Muralidhara HB, Venkatesh K, Guna VK, Gopalakrishna K, Kumar Y (2016) Potential applications of cellulose and chitosan nanoparticles/composites in wastewater treatment: a review. Carbohydr Polym 153:600–618. https://doi.org/10.1016/j.carbpol.2016.08.017

    Article  CAS  Google Scholar 

  18. Chandrasekharan A, Hwang YJ, Seong K, Park S, Kim S, Yang SY (2019) Acid-treated water-soluble chitosan suitable for microneedle-assisted intracutaneous drug delivery. Pharmaceutics 11:209. https://doi.org/10.3390/pharmaceutics11050209

  19. Cui L, Gao S, Song X, Huang L, Dong H, Liu J, Chena F, Yu S (2018) Preparation and characterization of chitosan membranes. RSC Adv 8:28433. https://doi.org/10.1039/c8ra05526b

    Article  CAS  Google Scholar 

  20. Chen P, Huang Y, Kuo T, Liu F, Lai J, Hsieh H (2007) Improvement in the properties of chitosan membranes using natural organic acid solutions as solvents for chitosan dissolution. J Med Biol Eng 27(1):23–28

    Google Scholar 

  21. Sun XF, Tian QQ, Xue ZM, Zhang YW, Mu TC (2014) The dissolution behaviour of chitosan in acetate-based ionic liquids and their interactions: from experimental evidence to density functional theory analysis. RSC Adv 4(57):30282–30291. https://doi.org/10.1039/C4RA02594F

  22. Crini G, Badot P.-M. (2008) Application of chitosan, a natural aminopolysaccharide, for dye removal from aqueous solutions by adsorption processes using batch studies: a review of recent literature. Prog Polym Sci 33(4), 399–447. https://doi.org/10.1016/j.progpolymsci.2007.11.001

  23. Galiano F, Briceño K, Marino T, Molino A, Christensen KV, Figoli A (2018) Advances in biopolymer-based membrane preparation and applications. J Membr Sci 564:562–586. https://doi.org/10.1016/j.memsci.2018.07.059

    Article  CAS  Google Scholar 

  24. Hassan ME, Bai J, Dou D (2019) Biopolymers: definition, classification and applications. Egypt J Chem 62 (9):1725–1737. https://doi.org/10.21608/ejchem.2019.6967.1580

  25. Correia CO, Caridade SG, Mano JF (2014) Chitosan membranes exhibiting shape memory capability by the action of controlled hydration. Polymers 6:1178–1186. https://doi.org/10.3390/polym6041178

    Article  CAS  Google Scholar 

  26. Govindan V, Hussiensyah S, Leng TP, Amri F (2014) Preparation and characterization of regenerated cellulose using ionic liquid. Adv Environ Biol 8(8):2620–2625

    Google Scholar 

  27. Liu ZH, Sun XF, Hao MY, Huang CY, Xue ZM, Mu TC (2015) Preparation and characterization of regenerated cellulose from ionic liquid using different methods. Carbohydr Polym 117:99–105. https://doi.org/10.1016/j.carbpol.2014.09.053

  28. Sakai Y, Hayano K, Yoshioka H, Yoshioka H (2001) A novel method of dissolving chitosan in water for industrial application. Polym J 33(8):640–642. https://doi.org/10.1295/polymj.33.640

  29. Wan NWS, Teong LC, Hanafiah MAKM (2011) Adsorption of dyes and heavy metal ion by chitosan films: a review. Carbohydr Polym 83:1446–1456. https://doi.org/10.1016/j.carbpol.2010.11.004

    Article  CAS  Google Scholar 

  30. Nešić AR, Veličković SJ, Antonović DG (2013) Modification of chitosan by zeolite A and adsorption of Bezactive Orange 16 from aqueous solution. Compos Part B 53:145–151. https://doi.org/10.1016/j.compositesb.2013.04.053

  31. Xiao DD, Wang Q, Yan H, Qin A, Lv XG, Zhao Y, Zhang M, Zhou Z, Xu JP, Hu QL, Lu MJ (2017) Comparison of morphological and functional restoration between asymmetric bilayer chitosan and bladder acellular matrix graft for bladder augmentation in a rat model. RSC Adv 7(67):42579–42589. https://doi.org/10.1039/C7RA07601K

    Article  CAS  Google Scholar 

  32. Travlou NA, Kyzas GZ, Lazaridis NK, Deliyanni EA (2012) Graphite oxide/chitosan composite for reactive dye removal. Chem Eng J 217:256–265. https://doi.org/10.1016/j.cej.2012.12.008

    Article  CAS  Google Scholar 

  33. Mirmohseni A, Dorraji MSS, Figoli A, Tasselli F (2012) Chitosan hollow fibers as effective biosorbent toward dye: preparation and modeling. Bioresour Technol 121(2012):212–220. https://doi.org/10.1016/j.biortech.2012.06.067

    Article  CAS  Google Scholar 

  34. Dotto GL, Moura JM, Cadaval TRS, Pinto LAA (2013) Application of chitosan films for the removal of food dyes from aqueous solutions by adsorption. Chem Eng J 214:8–16. https://doi.org/10.1016/j.cej.2012.10.027

    Article  CAS  Google Scholar 

  35. Fajardo AR, Lopes LC, Rubira AF, Muniz EC (2012) Development and application of chitosan/poly (vinyl alcohol) films for removal and recovery of Pb (II). Chem Eng J 183:253–260. https://doi.org/10.1016/j.cej.2011.12.071

    Article  CAS  Google Scholar 

  36. Wang X, Lou T, Zhao W, Song G (2016) Preparation of pure chitosan film using ternary solvents and its super absorbency. Carbohydr Polym. https://doi.org/10.1016/j.carbpol.2016.07.081

    Article  Google Scholar 

  37. Lee SJ, Heo DN, Moon JH, Ko WK, Lee JB, Bae MS, Park SW, Kim JE, Lee DH, Kim EC, Lee CH, Kwon IK (2014) Electrospun chitosan nanofibers with controlled levels of silver nanoparticles: preparation, characterization and antibacterial activity. Carbohydr Polym 111:530–537. https://doi.org/10.1016/j.carbpol.2014.04.026

    Article  CAS  Google Scholar 

  38. Ji Y-L, An Q-F, Zhao F-Y, Gao C-J (2015) Fabrication of chitosan/PDMCHEA blend positively charged membranes with improved mechanical properties and high nanofiltration performances. Desalination 357:8–15. https://doi.org/10.1016/j.desal.2014.11.005

    Article  CAS  Google Scholar 

  39. Hasegawa M, Isogai A, Kuga S, Onabe F (1994) Preparation of cellulose-chitosan blend film using chloral/dimethylformamide. Polymer (Guildf) 35:983–987. https://doi.org/10.1016/0032-3861(94)90942-3

  40. Dufresne A, Cavaillé J-Y, Dupeyre D et al (1999) Morphology, phase continuity and mechanical behaviour of polyamide 6/chitosan blends. Polymer (Guildf) 40:1657–1666. https://doi.org/10.1016/S0032-3861(98)00335-8

  41. Gopi S, Pius A, Karg R, Kleinschek KS, Thomas S (2019) Fabrication of cellulose acetate/chitosan blend films as efficient adsorbent for anionic water pollutants. Polym Bull https://doi.org/10.1007/s00289-018-2467-y

  42. Feng T, Xiong S, Zhang F (2013) Application of cross-linked porous chitosan films for Congo red adsorption from aqueous solution. Desalination Water Treat. https://doi.org/10.1080/19443994.2013.870715

    Article  Google Scholar 

  43. Trotta F, Biasizzo M, Caldera F (2012) Molecularly imprinted membranes. Membranes 2(3):440–477. https://doi.org/10.3390/membranes2030440

    Article  CAS  Google Scholar 

  44. Ahmed MA, Abdelbar NM, Mohamed AA (2018) Molecular imprinted chitosan-TiO2 nanocomposite for the selective removal of Rose Bengal from wastewater. Int J Biol Macromol 107:1046–1053. https://doi.org/10.1016/j.ijbiomac.2017.09.082

    Article  CAS  Google Scholar 

  45. Xu L, Huang Y-A, Zhu Q-J, Ye C (2015) Chitosan in molecularly-imprinted polymers: current and future prospects. Int J Mol sci 16(8):18328–18347. https://doi.org/10.3390/ijms160818328

    Article  CAS  Google Scholar 

  46. Tang Y, Hu X, Zhang X, Guo D, Zhang J, Kong F (2016) Chitosan/titanium dioxide nanocomposite coatings: rheological behavior and surface application to cellulosic paper. Carbohydr Polym 151:752–759. https://doi.org/10.1016/j.carbpol.2016.06.023

    Article  CAS  Google Scholar 

  47. Yin J, Deng B (2015) Polymer-matrix nanocomposite membranes for water treatment. J Membr Sci 479:256–275. https://doi.org/10.1016/j.memsci.2014.11.019

    Article  CAS  Google Scholar 

  48. Auta M, Hameed BH (2013) Coalesced chitosan activated carbon composite for batch and fixed-bed adsorption of cationic and anionic dyes. Colloids Surf B Biointerfaces 105:199–206. https://doi.org/10.1016/j.colsurfb.2012.12.021

    Article  CAS  Google Scholar 

  49. Zhu H, Fu Y, Jiang R, Yao J, Liu L, Chen Y, Xiao L, Zeng G (2013) Preparation, characterization and adsorption properties of chitosan modified magnetic graphitized multi-walled carbon nanotubes for highly effective removal of a carcinogenic dye from aqueous solution. Appl Surf Sci 285:865–873. https://doi.org/10.1016/j.apsusc.2013.09.003

    Article  CAS  Google Scholar 

  50. Nesic AR, Velickovic SJ, Antonovic DG (2012) Characterization of chitosan/montmorillonite membranes as adsorbents for Bezactiv Orange V-3R dye. J Hazard Mater 209–210:256–263. https://doi.org/10.1016/j.jhazmat.2012.01.020

    Article  CAS  Google Scholar 

  51. Salehi R, Arami M, Mahmoodi NM, Bahrami H, Khorramfar S (2010) Novel biocompatible composite (Chitosan–zinc oxide nanoparticle): Preparation, characterization and dye adsorption properties. Colloids Surf B Biointerfaces 80:86–93. https://doi.org/10.1016/j.colsurfb.2010.05.039

    Article  CAS  Google Scholar 

  52. Gupta VK (2009) Application of low-cost adsorbents for dye removal–a review. J Environ Manag 90:2313–2342https://doi.org/10.1016/j.jenvman.2008.11.017

  53. Auta M, Hameed BH (2011) Preparation of waste tea activated carbon using potassium acetate as an activating agent for adsorption of Acid Blue 25 dye. Chem Eng J 171:502. https://doi.org/10.1016/j.cej.2011.04.017

    Article  CAS  Google Scholar 

  54. Carrott PJM, Carrott MMLR, Roberts RA (1991) Physical adsorption of gases by microporous carbons. Colloids Surf 58:385–400. https://doi.org/10.1016/0166-6622(91)80217-C

    Article  CAS  Google Scholar 

  55. Lelifajri R, Nurfatimah R (2018) Preparation of polyethylene glycol diglycidyl ether (PEDGE) crosslinked chitosan/activated carbon composite film for Cd2+ removal. Carbohyd Polym. https://doi.org/10.1016/j.carbpol.2018.07.051

    Article  Google Scholar 

  56. Mousavi SR, Asghari M, Mahmoodi NM (2020) Chitosan-wrapped multiwalled carbon nanotube as filler within PEBA thin film nanocomposite (TFN) membrane to improve dye removal. Carbohyd Polym 237:116128. https://doi.org/10.1016/j.carbpol.2020.116128

    Article  CAS  Google Scholar 

  57. Iijima S (1991) Helical microtubes of graphitic carbon. Nature 354:56–58. https://doi.org/10.1038/354056a0

    Article  CAS  Google Scholar 

  58. Das R, Ali ME, Hamid SBA, Ramakrishna S, Chowdhury ZZ (2014) Carbon nanotube membranes for water purification: a bright future in water desalination. Desalination 336:97–109. https://doi.org/10.1016/j.desal.2013.12.026

    Article  CAS  Google Scholar 

  59. Wong KC, Goh PS, Taniguchi T, Ismail AF, Zahri K (2019) The role of geometrically different carbon-based fillers on the formation and gas separation performance of nanocomposite membrane. Carbon 149:33–44. https://doi.org/10.1016/j.carbon.2019.04.031

    Article  CAS  Google Scholar 

  60. Vatanpour V, Haghighat N (2019) Improvement of polyvinyl chloride nanofiltration membranes by incorporation of multiwalled carbon nanotubes modified with triethylenetetramine to use in treatment of dye wastewater. J Environ Manage 242:90–97. https://doi.org/10.1016/j.jenvman.2019.04.060

    Article  CAS  Google Scholar 

  61. Gong JL, Wang B, Zeng GM, Yang CP, Niu CG, Niu QY, Zhou WJ, Liang Y (2009) Removal of cationic dyes from aqueous solution using magnetic multi-wallcarbon nanotube nanocomposite as adsorbent. J Hazard Mater 164:1517–1522https://doi.org/10.1016/j.jhazmat.2008.09.072

  62. Chen C, Hu J, Shao D, Li J, Wang X (2009) Adsorption behavior of multiwall carbon nanotube/iron oxide magnetic composites for Ni(II) and Sr(II). J Hazard Mater 164:923–928. https://doi.org/10.1016/j.jhazmat.2008.08.089

    Article  CAS  Google Scholar 

  63. Chang PR, Zheng P, Liu B, Anderson DP, Yu J, Ma X (2011) Characterization of magnetic soluble starch-functionalized carbon nanotubes and its application for the adsorption of the dyes. J Hazard Mater 186:2144–2150. https://doi.org/10.1016/j.jhazmat.2010.12.119

    Article  CAS  Google Scholar 

  64. Zhu HY, Fu YQ, Jiang R, Yao J, Liu L, Chen YW, Xiao L, Zeng GM (2013) Preparation, characterization and adsorption properties of chitosan modified magnetic graphitized multi-walled carbon nanotubes for highly effective removal of a carcinogenic dye from aqueous solution. Appl Surf Sci 285(Part B):865–873. https://doi.org/10.1016/j.apsusc.2013.09.003

  65. Travlou NE, Kyzas GZ, Lazaridis NK, Deliyanni EA (2012) Graphite oxide/chitosan composite for reactive dye removal. Chem Eng J. https://doi.org/10.1016/j.cej.2012.12.008

    Article  Google Scholar 

  66. Hummers WS Jr, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80:1339. https://doi.org/10.1021/ja01539a017

    Article  CAS  Google Scholar 

  67. Ramesha GK, Kumara AV, Muralidhara HB, Sampath S (2011) Graphene and graphene oxide as effective adsorbents toward anionic and cationic dyes. J Colloid Interface Sci 361:270–277. https://doi.org/10.1016/j.jcis.2011.05.050

    Article  CAS  Google Scholar 

  68. Zhang W, Zhou C, Zhou W, Lei A, Zhang Q, Wan Q (2011) Zou B (2011) Fast and considerable adsorption of methylene blue dye onto graphene oxide. Bull Environ Contam Toxicol 87:86–90. https://doi.org/10.1007/s00128-011-0304-1

    Article  CAS  Google Scholar 

  69. Yang X, Tu Y, Li L, Shang S, Tao X-m (2010) Well-dispersed chitosan/graphene oxide nanocomposites. ACS Appl Mater Interfaces 2:1707–1713. https://doi.org/10.1021/am100222m

    Article  CAS  Google Scholar 

  70. Sabzevari M, Cree DE, Wilson LD (2018) Graphene oxide−chitosan composite material for treatment of a model dye effluent. ACS Omega 3:13045–13054. https://doi.org/10.1021/acsomega.8b01871

    Article  CAS  Google Scholar 

  71. Ngulube T, Gumbo JR, Masindi V, Maity A (2017) An update on synthetic dyes adsorption onto clay based minerals: a state-of-art review. J Environ Manage 191:35–57. https://doi.org/10.1016/j.jenvman.2016.12.031

    Article  CAS  Google Scholar 

  72. Huang R, Wang B, Yang B, Zheng D, Zhang Z (2011) Equilibrium, kinetic and thermodynamic studies of adsorption of Cd (II) from aqueous solution onto HACC-bentonite. Desalination 280:297–304. https://doi.org/10.1016/j.desal.2011.07.033

    Article  CAS  Google Scholar 

  73. Shahadat MM, Isamil S (2018) Regeneration performance of clay-based adsorbents for the removal of industrial dyes: a review. RSC Adv 8:24571.https://doi.org/10.1039/c8ra04290j

  74. Shaban M, Abukhadra MR, Shahien MG, Ibrahim SS (2018) Novel bentonite/zeolite-NaP composite efficiently removes methylene blue and Congo red dyes. Environ Chem Lett 16:275–280. https://doi.org/10.1007/s10311-017-0658-7

  75. Elmoubarki R, Mahjoubi FZ, Tounsadi H, Moustadraf J, Abdennouri M, Zouhri A, ElAlban A, Barka N (2015) Adsorption of textile dyes on raw and decanted Moroccan clays: kinetics, equilibrium and thermodynamics. Water Resour Ind 9:16–29. https://doi.org/10.1016/j.wri.2014.11.001

    Article  Google Scholar 

  76. Rasouli F, Aber S, Salari D, Khataee AR (2014) Optimized removal of Reactive Navy Blue SP-BR by organo-montmorillonite based adsorbents through central composite design. Appl Clay Sci 87:228–234. https://doi.org/10.1016/j.clay.2013.11.010

    Article  CAS  Google Scholar 

  77. Zhang L, Hu P, Wang J, Huang R (2016) Cross-linked quaternized chitosan/bentonite composite for the removal of Amino black 10B from aqueous solutions. Int J Biol Macromol. https://doi.org/10.1016/j.ijbiomac.2016.08.018

    Article  Google Scholar 

  78. Choudhari SK, Kariduraganavar MY (2009) Development of novel composite using quaternized chitosan and Na+-MMT clay for the pervaporation dehydration of isopropanol. J Colloid Interface Sci 338:111–120. https://doi.org/10.1016/j.jcis.2009.05.071

    Article  CAS  Google Scholar 

  79. Laysandra L, Ondang IJ, Ju Y-H, Ariandini BH, Mariska A, Soetaredjo FE, Putro JN, Santoso SP, Darsono FL (2019) Ismadji S (2019) Highly adsorptive chitosan/saponin-bentonite composite film for removal of methyl orange and Cr(VI). Environ Sci Pollut Res 26:5020–5037. https://doi.org/10.1007/s11356-018-4035-2

    Article  CAS  Google Scholar 

  80. Kurniawan A, Sutiono H, Ju YH, Soetaredjo FE, Ayucitra A, Yudha A, Ismadji S (2011) Utilization of rarasaponin natural surfactant for organo-bentonite preparation: application for methylene blue removal from aqueous effluent. Microporous Mesoporous Mater 142:184–193

    Article  CAS  Google Scholar 

  81. Kumar THV, Sivasankar V, Fayoud N, Oualid HA, Sundramoorthy AK (2018) Synthesis and characterization of coral-like hierarchical MgO incorporated fly ash composite for the effective adsorption of azo dye from aqueous solution. Appl Surf Sci 449:719–728. https://doi.org/10.1016/j.apsusc.2018.01.060

    Article  CAS  Google Scholar 

  82. Nga NK, Hong PTT, Lam TD, Huy TQ (2013) A facile synthesis of nanostructured magnesium oxide particles for enhanced adsorption performance in reactive blue 19 removal. J Colloid Interface Sci 398(2013):210–216. https://doi.org/10.1016/j.jcis.2013.02.018

    Article  CAS  Google Scholar 

  83. Nga NK, Chau NTT, Viet PH (2020) Preparation and characterization of a chitosan/MgO composite for the effective removal of reactive blue 19 dye from aqueous solution. J Sci Adv Mater Devices 5(2020):65–72. https://doi.org/10.1016/j.jsamd.2020.01.009

    Article  Google Scholar 

  84. Ngah WSW, Teong LC, Wong CS, Hanafiah MAKM (2012) Preparation and characterization of chitosan-zeolite composites. J Appl Polym Sci 125:2417–2425. https://doi.org/10.1002/app.36503

    Article  CAS  Google Scholar 

  85. Metin AÜ, ÇiftçI H, Alver E (2013) Efficient removal of acidic dye using low-cost biocomposite beads. Ind Eng Chem Res 52:10569−10581. https://doi.org/10.1021/ie400480s

  86. Saravanan R, Joicy S, Gupta VK, Narayanan V, Stephen A (2013) Visible light induced degradation of methylene blue using CeO2/V2O5 and CeO2/CuO catalysts. Mater Sci Eng C 33:4725–4731. https://doi.org/10.1016/j.msec.2013.07.034

    Article  CAS  Google Scholar 

  87. Khoshhesab ZM, Souhani S (2018) Adsorptive removal of reactive dyes from aqueous solutions using zinc oxide nanoparticles. J Chin Chem Soc, 1–9https://doi.org/10.1002/jccs.201700477

  88. Srivastava V, Gusain D, Sharma YC (2013) Synthesis, characterization and application of zinc oxide nanoparticles. Ceram Int 39(8):9803–9808. https://doi.org/10.1016/j.ceramint.2013.04.110

    Article  CAS  Google Scholar 

  89. Velmurugan R, Selvam K, Krishnakumar B, Swaminathan M (2011) An efficient reusable and antiphotocorrosive nano ZnO for the mineralization of Reactive Orange 4 under UV-A light. Sep Purif Technol 80:119–124. https://doi.org/10.1016/j.seppur.2011.04.018

    Article  CAS  Google Scholar 

  90. Khoshhesab ZM, Gonbadi K, Behbehani GR (2015) Removal of reactive black 8 dye from aqueous solutions using zinc oxide nanoparticles: investigation of adsorption parameters. Desalin Water Treat 56:1558. https://doi.org/10.1080/19443994.2014.967304

    Article  CAS  Google Scholar 

  91. Li Z, Yang RR, Yu M, Bai F, Li C, Wang ZL (2008) Cellular level biocompatibility and biosafety of ZnO nanowires. J Phys Chem C 112:20114–20117. https://doi.org/10.1021/jp808878p

    Article  CAS  Google Scholar 

  92. Muinde VM, Onyari JM, Wamalwa B, Wabomba JN (2020) Adsorption of malachite green dye from aqueous solutions using mesoporous chitosan–zinc oxide composite material. Environmental Chemistry and Ecotoxicology 2:115–125. https://doi.org/10.1016/j.enceco.2020.07.005

    Article  Google Scholar 

  93. Qiu B, Xu X-F, Deng R-H, Xia G-Q, Shang X-F, Zhou P-H (2019) Construction of chitosan/ZnO nanocomposite film by in situ precipitation. Int J Biol Macromol 122:82–87

    Google Scholar 

  94. Liu Z, Sun X, Hao M, Huang C, Xueb Z, Mu T (2015) Preparation and characterization of regenerated cellulose from ionic liquid using different methods. Carbohyd Polym 117:99–105 https://doi.org/10.1016/j.carbpol.2014.09.053

  95. Miller SA (2013). Sustainable polymers: opportunities for the next decade. ACS Macro Lett 2:550–554. https://doi.org/10.1021/mz400207g

  96. Swatloski RP, Spear SK, Holbrey JD, Rogers RD (2002) Dissolution of cellulose with ionic liquids. J Am Chem Soc 124:4974–4975. https://doi.org/10.1021/ja025790m

    Article  CAS  Google Scholar 

  97. Xu AR, Wang JJ, Wang HY (2010) Effects of anionic structure and lithium salts addition on the dissolution of cellulose in 1-butyl-3-methylimidazolium-basedionic liquid solvent systems. Green Chem 12:268–275. https://doi.org/10.1039/B916882F

  98. Andanson J-M, Bordes E, Devemy J, Leroux F, Padua AA, Gomes MFC (2014). Understanding the role of co-solvents in the dissolution of cellulose in ionic liquids. Green Chem 16:2528–2538. https://doi.org/10.1039/C3GC42244E

  99. Ma H, Burher C, Hsiao BS, Chu B (2011) Ultrafine polysaccharide nanofibrous membrane for water purification. Biomacromolecules 12:970–976. https://doi.org/10.1021/bm1013316

  100. Ibrahim H, Sazali N, Ibrahim IN, Sharip MS (2019) Nano-structured cellulose as green adsorbents for water purification: a mini review. J Appl Membr Sci Technol 23(2):45–56. https://doi.org/10.11113/amst.v23n2.154

  101. Abdul Khalil HPS, Saurabh CK, Adnan AS, Fazita MN, Syakir MI, Davoudpour Y et al (2016). A review on chitosan-cellulose blends and nanocellulose reinforced chitosan biocomposites: properties and their applications. Carbohyd Polym 150:216–226https://doi.org/10.1016/j.carbpol.2016.05.028

  102. Huo M-X, Jin Y-L, Sun Z-F, Ren F, Pei L, Ren P-G (2021) Facile synthesis of chitosan-based acid-resistant composite films for efficient selective adsorption properties towards anionic dyes. Carbohyd Polym 254:117473. https://doi.org/10.1016/j.carbpol.2020.117473

  103. Tomoda BT, Yassue-Cordeiro PH, Ernesto JV, Lopes PS, Peres LO, Ferreira da Silva C, Agostini de Moraes M (2020) Chapter 3-characterization of biopolymer membranes and films: physicochemical, mechanical, barrier, and biological properties. Biopolym Membr Films, 67–95. https://doi.org/10.1016/B978-0-12-818134-8.00003-1

  104. Barbosa GP, Debone HS, Severino P, Souto EB, da Silva CF (2016) Design and characterization of chitosan/zeolite composite films—effect of zeolite type and zeolite dose on the film properties. Mater Sci Eng C 60:246–254. https://doi.org/10.1016/j.msec.2015.11.034

    Article  CAS  Google Scholar 

  105. Murtey MD, Ramasamy P (2016) Sample preparations for scanning electron microscopy–life sciences. In: Modern electron microscopy in physical and life sciences, IntechOpen. https://doi.org/10.5772/61720

  106. de Oliveira Jr O, Ferreira L, Marystela G, de Lima Leite F, Da Róz AL (eds) (2017) Nanocharacterization Techniques. William Andrew

    Google Scholar 

  107. Sanmugam A, Vikraman D, Park HJ, Kim H (2017) One-pot facile methodology to synthesize chitosan-ZnO-graphene oxide hybrid composites for better dye adsorption and antibacterial activity. Nanomaterials 7:363. https://doi.org/10.3390/nano7110363

    Article  CAS  Google Scholar 

  108. Lawrence BD, Omenetto F, Chui K, Kaplan DL (2008) Processing methods to control silk fibroin film biomaterial features. J Mater Sci 43(21):6967–6985. https://doi.org/10.1007/s10853-008-2961-y

    Article  CAS  Google Scholar 

  109. Chalmers JM (2013) Infrared spectroscopy: sample presentation. In: reference module in chemistry, molecular sciences and chemical engineering. https://doi.org/10.1016/B978-0-12-409547-2.00254-7

  110. Callister W, Rethwisch D (2007) Materials science and engineering: an introduction. In: Materials science and engineering, 7th ed. Wiley

    Google Scholar 

  111. ASTM D882-18 (2018) Standard test method for tensile properties of thin plastic sheeting

    Google Scholar 

  112. ASTM D638-14 (2014) Standard test method for tensile properties of plastics

    Google Scholar 

  113. Saurabh CK, Gupta S, Bahadur J, Mazumder S, Variyar PS, Sharma A (2013) Radiation dose dependent change in physiochemical, mechanical and barrier properties of guar gum based films. Carbohydr Polym 98(2):1610–1617. https://doi.org/10.1016/j.carbpol.2013.07.041

    Article  CAS  Google Scholar 

  114. Shao W, Wu J, Liu H, Ye S, Jiang L, Liu X (2017) Novel bioactive surface functionalization of bacterial cellulose membrane. Carbohydr Polym 178:270–276. https://doi.org/10.1016/j.carbpol.2017.09.045

    Article  CAS  Google Scholar 

  115. Palacio L, Calvo JI, Pradanos P, Hernandez A, Väisänen P, Nyström M (1999) Contact angles and external protein adsorption onto UF membranes. J Membr Sci 152:189–201. https://doi.org/10.1016/S0376-7388(98)00203-8

    Article  CAS  Google Scholar 

  116. Gebald C, Wurzbacher JA, Tingaut P, Zimmermann T, Steinfeld A (2011) Amines-based nanofibrillated cellulose as adsorbent for CO2 capture. Environ Sci Technol 45:9101–9108. https://doi.org/10.1021/es202223p

  117. Ma H, Burger C, Hsiao BS, Chu B (2012) Nanofibrous microfiltration membrane based on cellulose nanowhiskers. Biomacromol 13:180–186. https://doi.org/10.1021/bm201421g

    Article  CAS  Google Scholar 

  118. Crini G, Lichtfouse E, Wilson LD, Morin-Crini N (2019) Conventional and non-conventional adsorbents for wastewater treatment. Environ Chem Lett 17:195–213. https://doi.org/10.1007/s10311-018-0786-8

    Article  CAS  Google Scholar 

  119. Crini G (2010) Wastewater treatment by sorption. In: Crini G, Badot PM (Eds) Sorption processes and pollution, chap 2. PUFC, Besançon, pp 39–78

    Google Scholar 

  120. Gadd GM (1990) Biosorption. Chem Ind 13:421–426

    Google Scholar 

  121. Nekouei F, Nekouei S, Tayagi IJ, Gupta VK (2015) Kinetic, thermodynamic and isotherm studies for acid blue 129 removal from liquids using copper oxide nanoparticle- modified activated carbon as a novel adsorbent. J Mol Liq 201:124–133. https://doi.org/10.1016/j.molliq.2014.09.027

  122. Chattopadhyay DP (2011) Chapter 4–chemistry of dyeing. In: Handbook of textile and industrial dyeing, principle, processes and types of dyes, volume 1 in wood publishing series in textiles, pp 150–183

    Google Scholar 

  123. Gaffar MA, EI-Rafie SM, EI-Tahlawy KF (2005) Preparation and utilization of ionic exchange resin via graft copolymerization of β-CD itaconate with chitosan. Carbohyd Polym 56:387–396. https://doi.org/10.1016/j.carbpol.2004.01.007

  124. Piccin JS, Vieira MLG, Gonçalves JO, Dotto GL, Pinto LAA (2009) Adsorption of FD&C red no. 40 by chitosan: isotherms analysis. J Food Eng 95:16–20. https://doi.org/10.1016/j.jfoodeng.2009.03.017

    Article  CAS  Google Scholar 

  125. Koprivanac N, Kusic H (2008) Hazardous organic pollutants in colored wastewaters. New Science Publishers, New York

    Google Scholar 

  126. Shirmardi M, Mesdaghinia A, Mahvi AH, Nasseri S, Nabizadeh R (2012) Kinetics and equilibrium studies on adsorption of acid red 18 (Azo-Dye) using multiwall carbon nanotubes (MWCNTs) from aqueous solution. E-J Chem 4:2371–2383. https://doi.org/10.1155/2012/541909

    Article  CAS  Google Scholar 

  127. Giles CH, MacEwan TH, Nakhwa SN, Smith D (1960) Studies in adsorption part XI: a system of classification of solution adsorption isotherms and its use in diagnosis of adsorption mechanisms and in measurement of specific surface areas of solids. J Chem Soc 3973–3993. https://doi.org/10.1039/JR9600003973

  128. Martin DF, Alessio RJ, McCane CH (2013) Removal of synthetic food dyes in aqueous solution by Octolig®. . J Environ Sci Health Part A Tox/Hazard Subst Environ Eng 48(5):495–500. https://doi.org/10.1080/10934529.2013.730413

    Article  CAS  Google Scholar 

  129. Rêgo TV, Cadaval Jr TRS, Dotto GL, Pinto LAA (2013) Statistical optimization, interaction analysis and desorption studies for the azo dyes adsorption onto chitosan films. J Colloid Interface Sci 411:27–33. https://doi.org/10.1016/j.jcis.2013.08.051

  130. Esquerdo VM, Cadaval TRS Jr, Dotto GL, Pinto LAA (2014) Chitosan scaffold as an alternative adsorbent for the removal of hazardous food dyes from aqueous solutions. J Colloid Interface Sci 424(2014):7–15. https://doi.org/10.1016/j.jcis.2014.02.028

    Article  CAS  Google Scholar 

  131. Gopi S, Pius A, Kargl R, Kleinschek KS, Thomas S (2018) Fabrication of cellulose acetate/chitosan blend films as efficient adsorbent for anionic water pollutants. Polym Bull. https://doi.org/10.1007/s00289-018-2467-y

    Article  Google Scholar 

  132. Gao Z, Bandosz TJ, Zhao Z, Han M, Qiu J (2009) Investigation of factors affecting adsorption of transition metals on oxidized carbon nanotubes. J Hazard Mater 167:357–365. https://doi.org/10.1016/j.jhazmat.2009.01.050

  133. Ren Y, Abbood HA, He F, Peng H, Huang K (2013) Magnetic EDTA-modified chitosan/SiO2/Fe3O4 adsorbent: preparation, characterization, and application in heavy metal adsorption. Chem Eng J 226:300–311. https://doi.org/10.1016/j.cej.2013.04.059

  134. Zuo P-P, Feng H-F, Xu Z-Z, Zhang L-F, Zhang Y-L, Xia W, Zhang W-Q (2013) Fabrication of biocompatible and mechanically reinforced graphene oxide-chitosan nanocomposite films. Chem Cent J 7:39–40. https://doi.org/10.1186/1752-153X-7-39

    Article  CAS  Google Scholar 

  135. Auta M, Hameed BH (2014) Chitosan–clay composite as highly effective and low-cost adsorbent for batch and fixed-bed adsorption of methylene blue. Chem Eng J 237:352–361. https://doi.org/10.1016/j.cej.2013.09.066

    Article  CAS  Google Scholar 

  136. Chen J-T, Fu Y-J, An Q-F, Lo S-C, Huang S-H, Hung W-S, Hu C-C, Lee K-R, Lai J-Y (2013) Tuning nanostructure of graphene oxide/polyelectrolyte LbL assemblies by controlling pH of GO suspension to fabricate transparent and super gas barrier films. Nanoscale 5:9081−9088. https://doi.org/10.1039/C3NR02845C

  137. Khosla E, Kaur S, Dave PN (2013) Mechanistic study of adsorption of acid orange-7 over aluminum oxide nanoparticles. J Eng 2013, 8. Article ID 593534. https://doi.org/10.1155/2013/593534

  138. Wang S, Wei J, Lv S, Guo Z, Jiang F (2013) Removal of organic dyes in environmental water onto magnetic-sulfonic graphene nanocomposite. Clean Soil Air Water 41(10):992–1001. https://doi.org/10.1002/clen.201200460

  139. Gok O, Ozcan AS, Ozcan A (2010) Adsorption behavior of a textile dye of Reactive Blue 19 from aqueous solutions onto modified bentonite. Appl Surf Sci 256:5439–5443. https://doi.org/10.1016/j.apsusc.2009.12.134

  140. Malakootian M, Mansoorian HJ, Hosseini A, Khanjani N (2015) Evaluating the efficacy of alumina/carbon nanotube hybrid adsorbents in removing Azo Reactive Red 198 and Blue 19 dyes from aqueous solutions. Process Saf Environ Protect 96:125–137. https://doi.org/10.1016/j.psep.2015.05.002

    Article  CAS  Google Scholar 

  141. Moussavi G, Mahmoudi M (2009) Removal of azo and anthraquinone reactive dyes from industrial wastewaters using MgO nanoparticles. J Hazard Mater 168:806–812. https://doi.org/10.1016/j.jhazmat.2009.02.097

  142. Khan MAN, Siddique M, Wahid F, Khan R (2015) Removal of reactive blue 19 dye by sono, photo and sonophotocatalytic oxidation using visible light. Ultrason Sonochem 26:370–377. https://doi.org/10.1016/j.ultsonch.2015.04.012

    Article  CAS  Google Scholar 

  143. Shahadat MM, Isamil S (2018) Regeneration performance of clay-based adsorbents for the removal of industrial dyes: a review. RSC Adv 8:24571. https://doi.org/10.1039/c8ra04290j

    Article  CAS  Google Scholar 

  144. Cadaval Jr TRS, Dotto GL, Pinto LAA (2014) Equilibrium isotherms, thermodynamics and kinetic studies for the adsorption of food azo dyes onto chitosan films. Chem Eng Commun. https://doi.org/10.1080/00986445.2014.934449

  145. Tang S, Xia D, Yao Y, Chen T, Sun J, Yin Y et al. (2019) Dye adsorption by self- recoverable, adjustable amphiphilic graphene aerogel. J Colloid Interface Science 554:682–691. https://doi.org/10.1016/j.jcis.2019.07.041

  146. Lai KC, Hiew BYZ, Lee LY, Gan S, Thangalazhy-Gopakumar S, Chiu WS, et al. (2019) Ice-templated graphene oxide/chitosan aerogel as an effective adsorbent for sequestration of metanil yellow dye. Bioresour Technol 274:134–144. https://doi.org/10.1016/j.biortech.2018.11.048

  147. Jiang R, Fu Y-Q, Zhu H-Y, Yao J, Xiao L (2012) Removal of methyl orange from aqueous solutions by magnetic maghemite/chitosan nanocomposite films: adsorption kinetics and equilibrium. J Appl Polym Sci 125:E540–E549. https://doi.org/10.1002/app.37003

    Article  CAS  Google Scholar 

  148. Habiba U, Siddique TA, Lee JJL, Joo TC, Ang BC, Afifi AM (2018) Adsorption study of methyl orange by chitosan/polyvinyl alcohol/zeolite electrospun composite nanofibrous membrane. Carbohyd Polym. https://doi.org/10.1016/j.carbpol.2018.02.081

    Article  Google Scholar 

  149. Wu FC, Tseng RL, Juang RS (2000) Comparative adsorption of metal and dye on flake- and bead-types of chitosans prepared from fishery wastes. J Hazard Mater B73:63–75. https://doi.org/10.1016/s0304-3894(99)00168-5

    Article  Google Scholar 

  150. Wong YC, Szeto YS, Cheung WH, McKay G (2004) Adsorption of acid dyes on chitosan–equilibrium isotherm analyses. Process Biochem 39(6):695–704. https://doi.org/10.1016/S0032-9592(03)00152-3

  151. Fan L, Zhang Y, Luo C, Lu F, Qiu H, Sun M (2012) Synthesis and characterization of magnetic β-cyclodextrin-chitosan nanoparticles as nano-adsorbents for removal of methyl blue. Int J Biol Macromol 50:444–450. https://doi.org/10.1016/j.ijbiomac.2011.12.016

    Article  CAS  Google Scholar 

  152. Kumari HJ, Krishnamoorthy P, Arumugam TK, Radhakrishnan S, Vasudevan D (2016) An efficient removal of crystal violet dye from waste water by adsorption onto TLAC/Chitosan composite: a novel low cost adsorbent. Int J Biol Macromol. https://doi.org/10.1016/j.ijbiomac.2016.11.077

    Article  Google Scholar 

  153. Vaz MG, Pereira AGB, Fajardo AR, Azevedo ACN, Rodrigues FHA (2017) Methylene blue adsorption on chitosan-g-poly(acrylic acid)/rice husk ash superabsorbent composite: kinetics, equilibrium, and thermodynamics. Water Air Soil Pollut 228:14. https://doi.org/10.1007/s11270-016-3185-4

  154. Dotto GL, Santos JMN, Tanabe EH, Bertuol DA, Foletto EL, Lima EC, Pavan FA (2017) Chitosan/polyamide nanofibers prepared by Forcespinning technology: a new adsorbent to remove anionic dyes from aqueous solutions. J Clean Prod 144:120–129. https://doi.org/10.1016/j.jclepro.2017.01.004

    Article  CAS  Google Scholar 

  155. Jawad AH, Abdulhameed AS, Mastuli MS (2020) Mesoporous cross-linked chitosan/activated charcoal composite for the removal of thionine cationic dye: comprehensive adsorption and mechanism study. J Polym Environ 28:1095–1105. https://doi.org/10.1007/s10924-020-01671-5

    Article  CAS  Google Scholar 

  156. Galan J, Trilleras J, Zapata PA, Arana VA, Grande-Tovar CD (2021) Optimization of chitosan glutaraldehyde-crosslinked beads for reactive blue 4 anionic dye removal using a surface response methodology. Life 11:85. https://doi.org/10.3390/life11020085

    Article  CAS  Google Scholar 

Download references

Acknowledgements

I sincerely acknowledged the kind supports received from our research members. In particular, I am thankful to Dr. Geeta Durga for her special encouragement and kind support for a successful compilation of this chapter book. Both Dr. Geeta Durga and Prof. Anuradha Mishra have given significant contribution in the course of completing the present task.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geeta Durga .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mijinyawa, A.H., Durga, G., Mishra, A. (2022). Preparation and Application of Chitosan-Based Membrane: Focusing on Dye Removal. In: Muthu, S.S., Khadir, A. (eds) Membrane Based Methods for Dye Containing Wastewater. Sustainable Textiles: Production, Processing, Manufacturing & Chemistry. Springer, Singapore. https://doi.org/10.1007/978-981-16-4823-6_6

Download citation

Publish with us

Policies and ethics