Skip to main content

Advertisement

Log in

Novel PVA/chitosan composite membrane modified using bio-fabricated α-MnO2 nanoparticles for photocatalytic degradation of cationic dyes

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

By integrating the benefits of poly vinyl alcohol (PVA) and chitosan (CS) with α-MnO2 nanoparticles (MNPs), a novel type of nano-polymer composite (PVA/CS-MNP) membrane was synthesized through a simple and facile casting method. In this proposed work, the membrane prepared was used for removal of organic textile dyes from their aqueous solutions. The as-synthesized PVA/CS-MNP membrane was examined using different analytical techniques such as Fourier transform infrared spectroscopy (FTIR) and field emission scanning electron microscopy (FESEM), and mechanical properties of material was also studied. Two cationic dyes, methylene blue (MB) and eosin yellow (EY), were chosen as template dyes to be removed from industrial waste water. These dyes were degraded by carrying out a reaction in which the synthesized membrane was used as a photocatalyst. The study of kinetics revealed that the reaction process followed pseudo-first-order kinetics. The efficiency of catalyst and the rate of reaction were also examined by varying parameters such as pH, initial concentration of dyes, and composition of membrane. The maximum efficiency of catalyst was observed at pH 12 as more than 95% of dyes degraded within 1 h of time span. The catalyst was found to be reusable as its efficiency did not deteriorate even after using it for several times. Such functional membrane having higher stability, low production cost, excellent efficiency to degrade dyes, and good recyclability are promising material for distinctly effective deletion of organic dyes from waste water.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Notes

  1. PVA: poly vinyl alcohol.

  2. CS: chitosan.

  3. MnO2 nanoparticles: MNPs.

  4. EY: eosin yellow.

  5. MB: methylene blue.

References

  • Ahmed A-K, Mahmoud SA, Zaki AH (2018) Visible light assisted photocatalytic degradation of crystal violet, bromophenol blue and eosin Y dyes using AgBr-ZnO nanocomposite. Environ Nanotechnol Monit Manag 9:164–173. https://doi.org/10.1016/j.enmm.2018.03.002

    Article  Google Scholar 

  • Alexandre M, Dubois P (2000) Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials. Mater Sci Eng R Rep 28(1):1–63

    Google Scholar 

  • Alkaykh S, Mbarek A, Ali-Shattle EE (2020) Photocatalytic degradation of methylene blue dye in aqueous solution by MnTiO3 nanoparticles under sunlight irradiation. Heliyon 6:4. https://doi.org/10.1016/j.heliyon.2020.e03663

    Article  Google Scholar 

  • Alver E, Metin AU (2012) Anionic dye removal from aqueous solutions using modified zeolite: Adsorption kinetics and isotherm studies. Chem Eng J 200:59–67

    Google Scholar 

  • Alzahrani E (2017) Photodegradation of binary azo dyes using core-shell Fe3O4/SiO2/TiO2nanospheres. Am J Anal Chem 8:95

    CAS  Google Scholar 

  • Ashori A, Bahrami R (2014) Modification of physico-mechanicalproperties of chitosan-tapioca starch blend films using nanographene. Polym Plast Technol Eng 53(3):312–318. https://doi.org/10.1080/03602559.2013.866246

    Article  CAS  Google Scholar 

  • Bonilla J, Fortunati E, Atarés L, Chiralt A, Kenny JM (2014) Physical, structural and antimicrobial properties of poly vinyl alcohol-chitosan biodegradable films. Food Hydrocoll 35:463–470

    CAS  Google Scholar 

  • Carmen Z, Daniela S (2012) Textile organic dyes – characteristics, polluting effects and separation/elimination procedures from industrial effluents – a critical overview. In: Puzyn T (ed) Organic pollutants ten years after the stockholm convention - environmental and analytical update. InTech, Available from: http://www.intechopen.com/books/organic-pollutants-ten-yearsafter-the-stockholm-convention-environmental-and-analytical-update/textile-organic-dyes-characteristicspolluting-effects-and-separation-elimination-procedures-from-in

  • Carstea EM, Bridgeman J, Baker A, Reynolds DM (2016) Fluorescence spectroscopy for wastewater monitoring: a review. Water Res 95:205–219

    CAS  Google Scholar 

  • Crini G (2006) Non-conventional low-cost adsorbents for dye removal: a review. Biores Tech 97:1061–1085. https://doi.org/10.1016/J.BIORTECH.2005.05.001

    Article  CAS  Google Scholar 

  • Danish M, Tayyab M, Akhtar A, Altaf AA, Kausar S, Ullah S, Iqbal M (2020). Effect of soft template variation on the synthesis, physical, and electrochemical properties of Mn3O4 nanomaterial. Inorg NanoMetal Chem. https://doi.org/10.1080/24701556.2020.1790000

  • Delavar Z, Shojaei A (2017) Enhanced mechanical properties ofchitosan/nanodiamond composites by improving interphase usingthermal oxidation ofnanodiamond. Carbohydr Polym 167:219–228

    CAS  Google Scholar 

  • Demirbas A (2009) Agricultural based activated carbons for the removal of dyes from aqueous solutions: a review. J Hazard Mater 167:1–9. https://doi.org/10.1016/j.jhazmat.2008.12.114

    Article  CAS  Google Scholar 

  • Djurisic AB, Leung YH, Ng AMC (2014) Strategies for ́ improving the efficiency of semiconductor metal oxide photocatalysis. Mater Horiz 1:400–410

    CAS  Google Scholar 

  • Elsayed AH, MohyEldin MS, Elsyed AM, Abo Elazm AH, Younes EM, Motaweh HA (2011) Synthesis and properties of polyaniline/ferrites nanocomposites. Int J Electrochem Sci 6:206–221

    CAS  Google Scholar 

  • Espinal L, Suib SL, Rusling JF (2004) Electrochemical catalysis of styrene epoxidation with films of MnO2 nanoparticles and H2O2. J Am Chem Soc 126:7676–7682

    CAS  Google Scholar 

  • Fishbein L (1979) Aromatic Amines and Azo Dyes. In: Fishbein L (ed) Studies in environmental science. Elsevier, Amsterdam, pp 356–416. https://doi.org/10.1016/S0166-1116(08)71329

    Chapter  Google Scholar 

  • Fong D, Marianne BA, Joel G-L, Caroline DH (2015) Biodegradable chitosan microparticles induce delayed STAT-1 activation and lead to distinct cytokine responses in differentially polarized human macrophages in vitro. Acta Biomater 12:183–194. https://doi.org/10.1016/j.actbio.2014.10.026

    Article  CAS  Google Scholar 

  • Ghaee A, ShariatyNiassar M, Barzin J, Matsuura T (2010) Effects of chitosan membrane morphology on copper ion adsorption. Chem Eng J 165(1):46–55

    CAS  Google Scholar 

  • Giustini M, Angelone D, Parente M, Dini D, Decker F, Lanuti A, Reale A, Brown T, Di Carlo A (2013) Emission spectra and transient photovoltage in dye-sensitized solar cells under stress tests. J Appl Electrochem 43:209–215

    CAS  Google Scholar 

  • Gnanaprakasam A, Sivakumar V, Thirumarimurugan M (2015) Influencing parameters in the photocatalytic degradation of organic effluent via nanometal oxide catalyst: a review. Indian J Eng Mater S 2015:1–16

    Google Scholar 

  • Gupta VK, Suhas. (2009) Application of low-cost adsorbents for dye removal-a review. J Environ Manage 90:2313–2342. https://doi.org/10.1016/j.jenvman.2008.11.017

    Article  CAS  Google Scholar 

  • Hunger K (2003) Dyes, General survey. industrial dyes: chemistry, properties, applications. Wiley Subscription Services Inc, A Wiley Company, Frankfurt, pp 1–10. https://doi.org/10.1021/ja0335418

    Chapter  Google Scholar 

  • Isai KA, Shrivastava VS (2019) Photocatalytiv degradation of methylene blue using ZnO and 2% Fe-ZnO semiconductor nanomaterials synthesized by sol-gel method: a comparative study. SN Appl Sci 1:1247. https://doi.org/10.1007/s42452-019-1279-5

    Article  CAS  Google Scholar 

  • Jalah M, Faisal M, Bouzid H, Park JG, Al-Sayari S, Ismail AA (2015) Comparative study on photocatalytic performances of crystalline a-and b-Bi2O3 nanoparticles under visible light. J Ind Eng Chem 30:183–189

    Google Scholar 

  • Jayakumar R, Prabaharan M, Sudheesh Kumar PT, Nair SV, Furuike T, Tamura H (2011) Novel Chitin and Chitosan Materials in Wound Dressing. In: Laskovski A (ed) Biomedical Engineering, Trends in Materials Science. InTech, Available from: http://www.intechopen.com/books/biomedical-engineering-trends-in-materials-science/novel-chitin-andchitosan-materials-in-wound-dressing

  • Jayanthi KG, Suja SK (2016) TiO2 (rutile) embedded inulin a versatile bio-nanocomposite for photocatalytic degradation of methylene blue. Carbohyd Polym 143:51–60

    Google Scholar 

  • Khabashesku V, Margrave J, Barrera E (2005) Functionalizedcarbon nanotubes and nanodiamonds for engineering and biomedical applications. Diam Relat Mater 14(3):859–866

    CAS  Google Scholar 

  • Khan A, Begum S, Ali N, Khan S, Hussain S, Sotomayora MDPT (2017) Preparation of cross linked chitosan magnetic membrane for cations sorption from aqueous solution. Water Sci Technol 75:2034–2046

    CAS  Google Scholar 

  • Kiatkittipong K, Assabumrungrat S (2017) A comparative study of sodium/hydrogen titanate nanotubes/nanoribbons on destruction of recalcitrant compounds and sedimentation. J Clean Prod 148:905–914

    CAS  Google Scholar 

  • Lang XY, Hirata A, Fujita T, Chen MW (2011) Nanoporous metal/oxide hybrid electrodes for electrochemical supercapacitors. Nat Nanotechnol 6:232–236

    CAS  Google Scholar 

  • Lim C, Dong SH, Dong WL (2021) Intermolecular interactions of chitosan: degree of acetylation and molecular weight. Carbohyd Polym 259:117782. https://doi.org/10.1016/j.carbpol.2021.117782

    Article  CAS  Google Scholar 

  • Liu JT, Ge X, Ye XX, Wang GZ, Zhang HM, Zhou HJ, Zhang YX, Zhao HJ (2016) 3D Graphene/δ-MnO2 aerogels for highly efficient and reversible removal of heavy metal ions. J Mater Chem a 4:1970–1979

    CAS  Google Scholar 

  • Liu G, Feng M, Tayyab M, Gong J, Zhang M, Yang M, Lin K (2021a) Direct and efficient reduction of perfluorooctanoic acid using bimetallic catalyst supported on carbon. J Hazard Mater 412:125224. https://doi.org/10.1016/j.jhazmat.2021.125224

    Article  CAS  Google Scholar 

  • Liu Y, Zhu Q, Tayyab M, Zhou L, Lei J, & Zhang J (2021b). Single‐atom Pt loaded zinc vacancies ZnO–ZnS induced type‐v electron transport for efficiency photocatalytic H 2 evolution. Solar RRL 2100536. https://doi.org/10.1002/solr.202100536

  • Lopez F, Cuomo F, Lo Nostro P, Ceglie A (2013) Effects of solvent and alkaline earth metals on the heat-induced precipitation process of sodium caseinate. Food Chem 136:266–272

    CAS  Google Scholar 

  • Mahamallik P, Pal A (2016) Photo-Fenton process in a Co (II)–adsorbed micellar softtemplate on an alumina support for rapid methylene blue degradation. RSC Adv 6:100876–100890

    CAS  Google Scholar 

  • Malika M, Sonawane SS (2022) The sono-photocatalytic performance of a Fe2O3 coated TiO2 based hybrid nanofluidunder visible light via RSM. Colloids Surf, A 641:128545. https://doi.org/10.1016/j.colsurfa.2022.128545

    Article  CAS  Google Scholar 

  • Martinová L, Lubasová D (2008) Electrospunchitosan based nanofibers. Res J Text Appar 12:72–79

    Google Scholar 

  • Mazloom F, Masjedi-Arani M, Salavati-Niasari M (2016) Controllable synthesis, characterization and photocatalytic studies on cadmium vanadate nanostructures. J Mol Liq 220:566–572. https://doi.org/10.1016/j.molliq.2016.05.003

    Article  CAS  Google Scholar 

  • El Miri N, Abdelouahdi K, Zahouily M, Fihri A, Barakat A, Solhy A, El Achaby M (2015) Bio-nanocomposite films based on cellulose nanocrystals filled polyvinyl alcohol/chitosan polymer blend. J Appl Polym Sci 132

  • Muinde VM, Onyari JM, Wamalwa B, Wabomba JN (2020) Adsorption of malachite green dye from aqueous solutions using mesoporous chitosan–zinc oxide composite material. Environ Chem Ecotoxicol 2:115–125. https://doi.org/10.1016/j.enceco.2020.07.005

    Article  Google Scholar 

  • Ndlovu T, Kuvarega AT, Arotiba OA, Sampath S, Krause RW, Mamba BB (2014) Exfoliated graphite/titanium dioxide nanocomposites for photodegradation of eosin yellow. Appl Surf Sci 300:159–164

    CAS  Google Scholar 

  • Ngah WW, Teong L, Hanafiah M (2011) Adsorption of dyes and heavy metal ions by chitosan composites: a review. Carbohyd Polym 83(4):1446–1456

    Google Scholar 

  • Oppong SOB, Anku WW, Opoku F, Shukla SK, Govender PP (2018) Photodegradation of eosin yellow dye in water under simulated solar light irradiation using La–doped ZnO nanostructure decorated on graphene oxide as an advanced photocatalyst. Chem Select 3:1180–1188

    CAS  Google Scholar 

  • Ou M, Huang J, Yang X, Quan K, Yang Y, Xie N, Wang K (2017) MnO2 Nanosheet Mediated “DD−A” FRET binary probes for sensitive detection of intracellular mRNA. Chem Sci 8:668–673

    CAS  Google Scholar 

  • Raja VR, Rosaline DR, Suganthi A, Rajarajan M (2018) Facile sonochemical synthesis of Zn2SnO4-V2O5 nanocomposite as an effective photocatalyst for degradation of eosin yellow. Ultrason Sonochem 44:310–318

    Google Scholar 

  • Ramasamy RV, Rosaline DR,Suganthi A,Rajarajan M (2018). Facile sonochemical synthesis of Zn2SnO4 -V2O5 nanocomposite as an effective photocatalyst for degradation of Eosin yellow. Ultrason Sonochem S1350417718303067. https://doi.org/10.1016/j.ultsonch.2018.02.043

  • Rashid J, Saleem S, Awan SU, Iqbal A, Kumar R, Barakat MA, Arshad M, Zaheer M, Rafique M, Awad M (2018) Stabilized fabrication of anatase-TiO2/FeS2 (pyrite) semiconductor composite nanocrystals for enhanced solar light-mediated photocatalytic degradation of methylene blue. RSC Adv 8:11935–11945

    CAS  Google Scholar 

  • Rauf MA, Meetani MA, Khaleel A, Ahmad A (2010) Photocatalytic degradation of Methylene Blue using a mixed catalyst and product analysis by LC/MS. Chem Eng J 157:373–378

    CAS  Google Scholar 

  • Reddy CV, Babu B, Reddy IN, Shim J (2018) Synthesis and characterization of pure tetragonal ZrO 2 nanoparticles with enhanced photocatalytic activity. Ceram Int 44(6):6940–6948

    CAS  Google Scholar 

  • Rosaline RD, Inbanathan SS, Suganthi A, Rajarajan M, Kavitha G, Srinivasan R, Hegazy HH, Umar A, Algarni H, Manikandan E (2020) Visible-Light Driven Photocatalytic Degradation of Eosin Yellow (EY) Dye Based on NiO-WO3 Nanoparticles. J NanosciNanotechnol 20(2):924–933. https://doi.org/10.1166/jnn.2020.16898

    Article  CAS  Google Scholar 

  • Russo MV, Avino P, Notardonato I, Cinelli G (2009) Cyanopropyl bonded-phase cartridges for trace enrichment of dioxins and chlorinated pesticides from water samples. Chromatographia 69:709–7017

    CAS  Google Scholar 

  • Shawky HA (2009) Synthesis of ion-imprinting chitosan/PVA crosslinked membrane for selective removal of Ag (I). App Poymer Sci 114:2608–2615. https://doi.org/10.1002/app.30816

    Article  CAS  Google Scholar 

  • Soltani N, Saion E, Hussein MZ, Erfani M, Abedini A, Bahmanrokh G, Navasery M, Vaziri P (2012) Visible light-induced degradation of methylene blue in the presence of photocatalytic ZnS and CdS nanoparticles. Int J Mol Sci 13(10):12242–12258

    CAS  Google Scholar 

  • Srinivasan A, Viraraghavan T (2010) Decolorization of dye wastewaters by biosorbents: A review. J Environ Manage 91:1915–1929. https://doi.org/10.1016/j.jenvman.2010.05.003

    Article  CAS  Google Scholar 

  • Srivastava V, Choubey AK (2020). Study of adsorption of anionic dyes over biofabricated crystalline α-MnO2 nanoparticles. Environ Sci Pollut Res 1–15. https://doi.org/10.1007/s11356-020-11622-1

  • Synowiecki J, Al-Khateeb NA (2003) Production, Properties, and Some New Applications of Chitin and Its Derivatives. Crit Rev Food Sci Nutr 43:145–171. https://doi.org/10.1080/10408690390826473

    Article  CAS  Google Scholar 

  • Tan WF, Yu YT, Wang MX, Liu F, Koopal LK (2013) Shape evolution synthesis of monodisperse spherical, ellipsoidal, and elongated hematite (a-Fe2O3) nanoparticles using ascorbic acid. Cryst Growth Des 14(1):157–164

    Google Scholar 

  • Tao Y, Ye L, Pan J, Wang Y, Tang B (2009) Removal of Pb (II) from aqueous solution on chitosan/TiO2 hybrid film. J Hazard Mater 161(2):718–722

    CAS  Google Scholar 

  • Tayyab M, Liu Y, Min S, Irfan RM, Zhu Q, Zhou L, Lei J, Zhang J (2022) Simultaneous hydrogen production with the selective oxidation of benzyl alcohol to benzaldehyde by a noble-metal-free photocatalyst VC/CdS nanowires. Chin J Catal 43(4):1165–1175. https://doi.org/10.1016/S1872-2067(21)63997-9

    Article  CAS  Google Scholar 

  • Tian Y, Ju B, Zhang S, Hou L (2016) Thermo responsive cellulose ether and its flocculation behaviour for organic dye removal. Carbohyd Polym 136:1209–1217

    CAS  Google Scholar 

  • Travaglini L, Gubitosi M, Di Gregorio MC, Pavel NV, D’Annibale A, Giustini M, Tellini VHS, Tato JV, Obiols-Rabasa M, Bayati S, Galantini L (2014) On the self-assembly of a tryptophan labeled deoxycholic acid. Phys Chem Chem Phys 16:19492–19504

    CAS  Google Scholar 

  • Truong TT, Liu Y, Ren Y, Trahey L, Sun Y (2012) Morphological and Crystalline Evolution of Nanostructured MnO2 and Its Application in Lithium-Air Batteries. ACS Nano 6:8067–8077

    CAS  Google Scholar 

  • Vakili M, Rafatullah M, Salamatinia B, Abdullah AZ, Ibrahim MH, Tan KB, Gholami Z, Amouzgar P (2014) Application of chitosan and its derivatives as adsorbents for dye removal from water and wastewater: A review. Carbohydr Polym 113:115–130. https://doi.org/10.1016/j.carbpol.2014.07.007

    Article  CAS  Google Scholar 

  • Vatanpour V, Madaeni SS, Rajabi L, Zinadini S, Derakhshan AA (2012) Boehmite nanoparticles as a new nanofiller forpreparation of antifouling mixed matrix membranes. J Membr Sci 401:132–143

    Google Scholar 

  • Venditti F, Cuomo F, Ceglie A, Avino P, Russo MV, Lopez F (2015) Visible light caffeic acid degradation by carbon-doped titanium dioxide. Langmuir 31:3627–3634

    CAS  Google Scholar 

  • Vicentini DS, Smania A, Laranjeira M (2010) Chitosan/poly (vinyl alcohol) films containing ZnO nanoparticles and plasticizers. Mater Sci Eng C 30(4):503–508

    CAS  Google Scholar 

  • Wang X, Li Y (2002) Selected-Control Hydrothermal Synthesis of αand β-MnO2 Single Crystal Nanowires. J Am Chem Soc 124:2880–2881

    CAS  Google Scholar 

  • Yang X, Li I, Shang S, Tao X (2010) Synthesis and characterization of layer aligned poly (vinyl alcohol)/ grapheme nanocomposites. Polymer 51(15):3431–3435

    CAS  Google Scholar 

  • Yao T, Guo S, Zeng C, Wang C, Zhang L (2015) Investigation on efficient adsorption of cationic dyes on porous magnetic polyacrylamide microspheres. J Hazard Mater 292:90–97

    CAS  Google Scholar 

  • Yaroslavov AA, Efimova AA, Krasnikov EA, Trosheva KS, Popov AS, Melik-Nubarov NS, Krivtsov GG (2021) Chitosan-based multi-liposomal complexes: Synthesis, biodegradability and cytotoxicity. Int J Biol Macromol. https://doi.org/10.1016/j.ijbiomac.2021.02.169

    Article  Google Scholar 

  • Yuan Y, Wu S, Shu F, Liu Z (2014) A MnO2 Nanosheet as a Label-Free Nanoplatform for Homogeneous Biosensing. Chem Commun 50:1095–1097

    CAS  Google Scholar 

  • Zhang M, Yuan R, Chai Y, Li W, Zhong H, Wang C (2011) Glucose biosensor based on titanium dioxide-multiwall carbon nanotubes-chitosan composite and functionalized gold nanoparticles. Bioprocess Biosyst Eng 34(9):1143–1150

    CAS  Google Scholar 

  • Zhang K, Han X, Hu Z, Zhang X, Tao Z, Chen J (2015) Nanostructured Mn-based Oxides for Electrochemical Energy Storage and Conversion. Chem Soc Rev 44:699–728

    Google Scholar 

  • Zhou Z, Peng X, Zhong L, Wu L, Cao X, Sun RC (2016) Electrospun cellulose acetate supported Ag@AgCl composites with facet-dependent photocatalytic properties on degradation of organic dyes under visible-light irradiation. Carbohyd Polym 136:322–328

    CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge MNIT, Jaipur, for FTIR and FESEM and CSIR-CDRI for ESI-MS characterization of samples used in this study. The authors declare no competing financial interests. This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

VS performed the experiments, analyzed, and interpreted the data. AKC guided throughout, read, and approved the final manuscript.

Corresponding author

Correspondence to Vartika Srivastava.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Availability of data and materials

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: Sami Rtimi

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1588 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Srivastava, V., Choubey, A.K. Novel PVA/chitosan composite membrane modified using bio-fabricated α-MnO2 nanoparticles for photocatalytic degradation of cationic dyes. Environ Sci Pollut Res 30, 35838–35852 (2023). https://doi.org/10.1007/s11356-022-24634-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-022-24634-w

Keywords

Navigation