Skip to main content
Log in

Nanoarchitecture of PANI/CNT/GO hybrid nanocomposites with enhanced dielectric and gas sensing properties

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

The polyaniline (PANI) and PANI/carbon nanotubes (CNT)/graphene oxide (GO) thin film were prepared in indium tin oxide coated glass plate by spin coating method. The molecular structure and physical properties of PANI and its hybrid nanocomposites were characterized by UV–Vis spectra, field emission scanning electron microscope (FE-SEM) and atomic force microscopy (AFM). UV–Vis spectra show the agreement with formation of ππ* electron interaction between PANI and CNT/GO. This interaction causes the decrease of bandgap due to confinement of the electrons and holes. The FE-SEM and AFM image of hybrid nanocomposites is different than PANI due to globular morphologies in the presence of CNT and GO. The surface free energy of PANI and hybrid nanocomposites thin films was analyzed by measuring contact angles. The dielectric permittivity and tangential loss (tan δ) of hybrid nanocomposites with different frequency were investigated at room temperature. The incorporation of CNT and GO in PANI matrix possesses high dielectric constant, low dielectric loss and high energy density. The excellent C3H6O gas sensing performance of PANI/CNT/GO hybrid nanocomposites thin film may be attributed to more oxygen vacancies and narrower bandgap. The response of PANI/CNT/GO sensor was four times better than PANI sensor with the recovery time of 506 s.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author on request.

References

  1. Moliton A, Hiorns RC (2004) Review of electronic and optical properties of semiconducting p-conjugated polymers: applications in optoelectronics. Polym Int 53:1397–1412. https://doi.org/10.1002/pi.1587

    Article  CAS  Google Scholar 

  2. Patil YS, Salunkhe PH, Navale YH, Ubale VP, Patil VB, Maldar NN, Ghanwat AA (2018) Synthesis, characterization and conductivity study of co-polyazomethine polymer containing thiazole active ring. AIP Conf Proc 1989:020034. https://doi.org/10.1063/1.5047710

    Article  CAS  Google Scholar 

  3. Yan B, Zhang W, Qin X, Piao Y (2020) Salt powder assisted synthesis of nanostructured materials and their electrochemical applications in energy storage devices. Chem Eng J 400:125895. https://doi.org/10.1016/j.cej.2020.125895

    Article  CAS  Google Scholar 

  4. Prateek VK, Thakur RK (2016) Recent progress on ferroelectric polymer-based nanocomposites for high energy density capacitors: synthesis, dielectric properties and future aspec. Chem Rev 116:4260–4317. https://doi.org/10.1021/acs.chemrev.5b00495

    Article  CAS  Google Scholar 

  5. Vijayalakshmi S, Nithya S (2020) Investigation on polyaniline with manganese dioxide nanostructure by using an in situ oxidative polymerization method. Ionics 26:839–848. https://doi.org/10.1007/s11581-019-03207-x

    Article  CAS  Google Scholar 

  6. Yasoda KY, Batabyal SK (2020) Polyaniline decorated manganese oxide nanoflakes coated graphene oxide as a hybrid-supercapacitor for high performance energy storage application. Ionics 26:2493–2500. https://doi.org/10.1007/s11581-019-03294-w

    Article  CAS  Google Scholar 

  7. Becke AD (1993) Density-functional thermochemistry. III. the role of exact exchange. J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  8. Foresman JB, Pople JA, Frisch MJ (1992) toward a systematic molecular orbital theory for excited states. J Phys Chem 96:135–149. https://doi.org/10.1021/j100180a030

    Article  CAS  Google Scholar 

  9. Patil YS, Mahindrakar JN, Salunkhe PH, Ubale VP, Ghanwat AA (2019) Synthesis characterization and electrical and thermal stability of semiconducting π-conjugated polyazomethines containing a tetraphenylthiophene-oxazole unit. J Electron Mater 48:8067–8075. https://doi.org/10.1007/s11664-019-07584-x

    Article  CAS  Google Scholar 

  10. Amin GT, Nasser A, Laleh SG, Iraj A, Hassan N (2018) A new route for the synthesis of polyaniline nanoarrayson graphene oxide for high-performance supercapacitors. Electrochim Acta 265:379–390. https://doi.org/10.1016/j.electacta.2018.01.166

    Article  CAS  Google Scholar 

  11. Zhang L, Xi R, Zhang S-H, Wang C, Wu H-D, Shi L-Y, Pa G-B (2019) Enhanced dielectric properties of ferroelectric polymer with perflurooctanoic acid doped reduced polyaniline/reduced graphene oxide fillers. Mater Lett 242:1–4. https://doi.org/10.1016/j.matlet.2019.01.060

    Article  CAS  Google Scholar 

  12. Feng H, Fang X, Liu X, Pei Q, Cui Z-K, Deng S, Gu J, Zhuang Q (2018) Reduced polyaniline decorated reduced graphene oxide/polyimide nanocomposite films with enhanced dielectric properties and thermostability. Compos Part A Appl Sci Manuf 109:578–584. https://doi.org/10.1016/j.compositesa.2018.03.035

    Article  CAS  Google Scholar 

  13. Maity N, Mandal A, Nandi AK (2015) Interface engineering of ionic liquid integrated graphene in poly(vinylidene fluoride) matrix yielding magnificent improvement in mechanical, electrical and dielectric properties. Polymer 65:154–167. https://doi.org/10.1016/j.polymer.2015.03.066

    Article  CAS  Google Scholar 

  14. de Silva AB, de Arjmand M, Sundararaj U, Suman Bretas RE (2014) Novel composites of copper nanowire/PVDF with superior dielectric properties. Polymer 55:226–234. https://doi.org/10.1016/j.polymer.2013.11.045

    Article  CAS  Google Scholar 

  15. Giz MJ, Maranha SLA, Torresi RM (2002) AFM morphological study of electropolymerised polyaniline films modified by surfactant and large anions. Electrochem Commun 2:377–381. https://doi.org/10.1016/S1388-2481(00)00041-2

    Article  Google Scholar 

  16. Salvatierra RV, Zitzer G, Savu S-A, Alves AP, Zarbin AJG, Chassé T, Casu MB, Rocco MLM (2015) Carbon nanotube/polyaniline nanocomposites: electronic structure doping level and morphology investigations. Synth Met 203:16–21. https://doi.org/10.1016/j.synthmet.2015.01.034

    Article  CAS  Google Scholar 

  17. Rajesh AT, Kumar D (2009) Recent progress in the development of nano-structured conducting polymers/nanocomposites for sensor applications. Sens Actuators B: Chem 136:275–286. https://doi.org/10.1016/j.snb.2008.09.014

    Article  CAS  Google Scholar 

  18. Patil YS, Salunkhe PH, Navale YH, Patil VB, Ubale VP, Ghanwat AA (2019) Tetraphenylthiophene–thiazole-based π-conjugated polyazomethines: synthesis characterization and gas sensing application. Polym Bul 77:2205–2226. https://doi.org/10.1007/s00289-019-02856-2

    Article  CAS  Google Scholar 

  19. Pandule SS, Patil MR, Keri RS (2018) Properties and ammonia gas sensing applications of different inorganic acid-doped poly(2-chloroanilines). Polym Bull 75:4469–4483. https://doi.org/10.1007/s00289-017-2263-0

    Article  CAS  Google Scholar 

  20. Sen T, Shimpi NG, Mishra S (2016) Synthesis and sensing applications of polyaniline nanocomposites: a review. RSC Adv 6:42196–42222. https://doi.org/10.1039/C6RA03049A

    Article  CAS  Google Scholar 

  21. Subtil EL, Gonçalves J, Lemos HG, Venancio EC (2020) Preparation and characterization of a new composite conductive polyethersulfone membrane using polyaniline (PANI) and reduced graphene oxide (rGO). Chem Eng J. https://doi.org/10.1016/j.cej.2020.124612

    Article  Google Scholar 

  22. Verma A, Choudhary RB (2019) Mixed morphology, inflated e-h+ recombination rate and augmented optical absorbance capacity of PANI/PPY/CdS nanocomposite as electron transport layer for OLED application. J Inorg Organomet Polym Mater 29:438–444. https://doi.org/10.1007/s10904-018-1015-4

    Article  CAS  Google Scholar 

  23. Dutta K, Hazra A, Bhattacharyya P (2016) Ti/TiO2 nanotube array/Ti capacitive device for non-polar aromatic hydrocarbon detection. IEEE Trans Device Mater Reliab 16:235–242. https://doi.org/10.1109/TDMR.2016.2564447

    Article  CAS  Google Scholar 

  24. Tsai FC, Chang CC, Liu LC, Chen WC, Jenekhe SA (2005) New thiophene-linked conjugated poly(azomethine)s: theoretical electronic structure synthes property. Macramol 38:1958. https://doi.org/10.1021/ma048112o

    Article  CAS  Google Scholar 

  25. Baig U, Gondal MA, Ilyas AM, Sanagi MM (2017) Band gap engineered polymeric-inorganic nanocomposite catalysts: synthesis isothermal stability photocatalytic activity and photovoltaic performance. J Mater Sci Technol 33:547–557. https://doi.org/10.1016/j.jmst.2016.11.031

    Article  CAS  Google Scholar 

  26. Martina V, Riccardis MF, Carbone D, Rotolo P, Bozzini B, Mele C (2011) Electrodeposition of polyaniline–carbon nanotubes composite films and investigation on their role in corrosion protection of austenitic stainless steel by SNIFTIR analysis. J Nanopart Res 13:6035–6047. https://doi.org/10.1007/s11051-011-0453-5

    Article  CAS  Google Scholar 

  27. Huang YF, Lin CW (2012) Polyaniline-intercalated graphene oxide sheet and its transition to a nanotube through a self-curling process. Polymer 53:1079–1085. https://doi.org/10.1016/j.polymer.2012.01.025

    Article  CAS  Google Scholar 

  28. Yu L, Zhang Y, Tong W, Chu PK, Guo W (2012) Hierarchical composites of conductivity controllable polyaniline layers on the exfoliated graphite for dielectric application. Compos Part A 43:2039–2045. https://doi.org/10.1016/j.compositesa.2012.06.001

    Article  CAS  Google Scholar 

  29. Aqil MM, Azam MA, Aziz MF, Latif R (2017) Deposition and characterization of molybdenum thin film using direct current magnetron and atomic force microscopy. J Nanotechnol 2:1–10. https://doi.org/10.1155/2017/4862087

    Article  CAS  Google Scholar 

  30. Giz M, de Albuquerque Maranhao SL, Torresi RM (2000) AFM morphological study of electropolymerised polyaniline films modified by surfactant and large anions. Electrochem Commun 2:377–381. https://doi.org/10.1016/S1388-2481(00)00041-2

    Article  CAS  Google Scholar 

  31. Heinson WR, Sorensen CM, Chakrabarti A (2012) A three parameter description of the structure of diffusion limited cluster fractal aggregates. J Colloid Interface Sci 375:65–69. https://doi.org/10.1016/j.jcis.2012.01.062

    Article  CAS  Google Scholar 

  32. Nazari H, Arefinia R (2019) An investigation into the relationship between the electrical conductivity and particle size of polyaniline in nano scale. Int J Polym Anal Charact 5:1–13. https://doi.org/10.1080/1023666X.2018.1564128

    Article  Google Scholar 

  33. Sagar R, Gaur MS, Kushwah V, Rathore A, Piliptsou DG, Rogachev AA (2020) Preparation, characterization and microhardness measurements of hybrid nanocomposites based on PMMA+ P (VDF–TrFE) and graphene oxide. Polym Bull. https://doi.org/10.1007/s00289-020-03457-0

    Article  Google Scholar 

  34. Kolla HS, Surwade SP, Zhang X, Macdiarmid AG, Manohar SK (2005) Absolute molecular weight of polyaniline. J Am Chem Soc 127:16769–16771. https://doi.org/10.1021/ja055327k

    Article  CAS  Google Scholar 

  35. Abdel HZ, Hasan GM, Rehim SAS, Hamid MA, Ibrahim A (2019) Synthesis and characterization of nanostructured polyaniline thin films with superhydrophobic properties. Coatings 9:748. https://doi.org/10.3390/coatings9110748

    Article  CAS  Google Scholar 

  36. Manjunath S, Koppalkar AK, Prasad MV (2008) Dielectric spectroscopy of polyaniline/stanic oxide (PANI/SnO2) composites. Ferroelectrics 366:22–28. https://doi.org/10.1080/00150190802363082

    Article  CAS  Google Scholar 

  37. Ben OZ, Fattoum A, Arous M (2013) Dielectric study of polyaniline/poly (methylmethacrylate) composite films below the percolation threshold. J Electrost 71:999–1004. https://doi.org/10.1016/j.elstat.2013.09.004

    Article  CAS  Google Scholar 

  38. Kondawar SB, Dahegaonkar AD, Tabhane VA, Nandanwar DV (2014) Thermal and frequency dependance dielectric properties of conducting polymer/ fly ash composites. Adv Mater Lett 5:360–365. https://doi.org/10.5185/amlett.2014.amwc.1036

    Article  CAS  Google Scholar 

  39. Ajmal M, Islam MU (2017) Structural, optical and dielectric properties of polyaniline-Nio. 5Zno. 5Fe2O4 nano-composites. Physic B: Condens Matter 521:355–360. https://doi.org/10.1016/j.physb.2017.07.010

    Article  CAS  Google Scholar 

  40. Wan C, Jiao Y, Li J (2017) Multilayer core–shell structured composite paper electrode consisting of copper, cuprous oxide and graphite assembled on cellulose fibers for asymmetric supercapacitors. J Power Source 361:122–132. https://doi.org/10.1016/j.jpowsour.2017.06.070

    Article  CAS  Google Scholar 

  41. Zhao X, Chen C, Huang Z, Jin L, Zhang J, Li Y, Zhang Q (2015) Rational design of polyaniline/MnO2/carbon cloth ternary hybrids as electrodes for supercapacitors. RSC Adv 5:66311–66317. https://doi.org/10.1039/C5RA10916G

    Article  CAS  Google Scholar 

  42. Athawale AA, Katre PP (2006) Nanocomposite of Pd-polyaniline as a selective methanol sensor. Sens Actuators B Chem 114:263–267. https://doi.org/10.1016/j.snb.2005.05.009

    Article  CAS  Google Scholar 

  43. Ogura K, Saino T, Nakayama M, Shiigi H (1997) The humidity dependence of the electrical conductivity of a soluble polyaniline-poly(vinyl alcohol) composite film. J Mater Chem 7:2363–2366. https://doi.org/10.1039/A705463G

    Article  CAS  Google Scholar 

  44. Segal E, Tchoudakov R, Narkis M, Siegmann A, Wei Y (2005) Polystyrene/polyaniline nanoblends for sensing of aliphatic alcohols. Sens Actuators B Chem 104:140–150. https://doi.org/10.1016/j.snb.2004.05.002

    Article  CAS  Google Scholar 

  45. Tongpool R, Yoriya S (2005) Kinetics of nitrogen dioxide exposure in lead phthalocyanine sensors. Thin Solid Film 477:148–152. https://doi.org/10.1016/j.tsf.2004.08.125

    Article  CAS  Google Scholar 

  46. Blackwood D, Josowicz M (1991) Work function and spectroscopic studies of interactions between conducting polymers and organic vapors. J Phys Chem 95:493–502. https://doi.org/10.1021/j100154a086

    Article  CAS  Google Scholar 

  47. Li J, Lu Y, Ye Q, Cinke M, Han J, Meyyappan M (2003) Carbon nanotube sensors for gas and organic vapor detection. Nano Lett 3(7):929–933. https://doi.org/10.1021/nl034220x

    Article  CAS  Google Scholar 

  48. Marzano M, Cultrera A, Ortolano M, Callegaro L (2019) A correlation noise spectrometer for flicker noise measurement in graphene samples. Meas Sci Technol 30(3):035102. https://doi.org/10.1088/1361-6501/aafcab

    Article  CAS  Google Scholar 

  49. Choi YR, Yoon Y-G, Choi KS, Kang JH, Shim Y-S, Kim YH, Chang HJ, Lee J-H, Park CR, Kim SY, Jang HW (2015) Role of oxygen functional groups in graphene oxide for reversible room-temperature NO2 sensing. Carbon 91:178–187. https://doi.org/10.1016/j.carbon.2015.04.082

    Article  CAS  Google Scholar 

  50. Wang J, Zhao R, Yang M, Liu Z, Liu Z (2013) Inverse relationship between carrier mobility and bandgap in graphene. J Chem Phys 138(8):084701. https://doi.org/10.1063/1.4792142

    Article  CAS  Google Scholar 

  51. Yang M-Z, Dai C-L, Shih P-J (2014) An acetone microsensor with a ring oscillator circuit fabricated using the commercial 0.18 μm CMOS process. Sensors 14:12735–12747. https://doi.org/10.3390/s140712735

    Article  CAS  Google Scholar 

  52. Albaris H, Karuppasamy G (2019) Fabrication of room temperature liquid petroleum gas sensor based on PAni–CNT–V2O5 hybrid nanocomposite. Appl Nanosci 8:20–30. https://doi.org/10.1007/s13204-019-00967-w

    Article  CAS  Google Scholar 

  53. Tang H, Lin Y, Andrews C, Sodano HA (2011) Nanocomposites with increased energy density through high aspect ratio PZT nanowires. Nanotechnology 1:015702–015711. https://doi.org/10.1088/0957-4484/22/1/015702

    Article  CAS  Google Scholar 

  54. Sagar R, Gaur SS, Grace AN, Gaur MS (2019) Enhanced energy storage in polyvinylidenefluoride (PVDF)+BaZrO3 electroactive nanocomposites. Ionics 24:1965–1978. https://doi.org/10.1007/s11581-018-2436-3

    Article  CAS  Google Scholar 

  55. Singla ML, Sehrawat R, Rana N, Singh K (2010) Dielectric behaviour of emeraldine base polymer–ZnO nanocomposite film in the low to medium frequency. J Nanopart Res 13:2109–2116. https://doi.org/10.1007/s11051-010-9968-4

    Article  CAS  Google Scholar 

  56. Chen I-W, Chou Y-C, Wang P-Y (2019) Integration of Ultrathin MoS2/PANI/CNT composite paper in producing all-solid-state flexible supercapacitors with exceptional volumetric energy density. J Phys Chem C 123:29638–29646. https://doi.org/10.1021/acs.jpcc.9b04046

    Article  CAS  Google Scholar 

  57. Liu D, Du P, Wei W, Wang H, Wang Q, Liu P (2017) Flexible and robust sandwich-structured S-doped reduced graphene oxide/carbon nanotubes/polyaniline (S-rGO/CNTs/PANI) composite membranes: excellent candidate as free-standing electrodes for high-performance supercapacitors. Electrochem Act 233:201–209. https://doi.org/10.1016/j.electacta.2017.03.040

    Article  CAS  Google Scholar 

  58. Kim M, Kim YK, Kim J, Cho S, Lee G, Jang J (2016) Fabrication of a polyaniline/MoS2 nanocomposite using self-stabilized dispersion polymerization for supercapacitors with high energy density. RSC Adv 6:27460–27465. https://doi.org/10.1039/C6RA00797J

    Article  CAS  Google Scholar 

  59. Tan Y, Liu Y, Zhang Y, Xu C, Kong L, Kang L, Ran F (2017) Dulse-derived porous carbon-polyaniline nanocomposite electrode for high-performance supercapacitors. J Appl Polym Scie 135:45776. https://doi.org/10.1002/app.45776

    Article  CAS  Google Scholar 

  60. Zhu J, Chen M, Qu H, Zhang X, Wei H, Luo Z, Guo Z (2012) Interfacial polymerized polyaniline/graphite oxide nanocomposites toward electrochemical energy storage. Polymer 53:5953–5964. https://doi.org/10.1016/j.polymer.2012.10.002

    Article  CAS  Google Scholar 

  61. Pang Z, Yu J, Li D, Nie Q, Zhang J, Wei Q (2018) Free-standing TiO2- SiO2/PANI composite nanofibers for ammonia sensors. J Mater Sci Mater Electron 29:3576–3583. https://doi.org/10.1007/s10854-017-8287-2

    Article  CAS  Google Scholar 

  62. Pawar SG, Chougule MA, Patil SL, Raut BT, Godse PR, Sen S (2011) Room temperature ammonia gas sensor based on polyaniline-TiO2 nanocomposite. IEEE Sens J 11:3417–3423. https://doi.org/10.1109/JSEN.2011.2160392

    Article  CAS  Google Scholar 

  63. Liu C, Tai HL, Zhang P, Su YJ, Jiang YD (2017) Enhanced ammonia-sensing properties of PANI-TiO2-Au ternary selfassembly nanocomposite thin film at room temperature. Sens Actuators B Chem 246:85–95. https://doi.org/10.1016/j.snb.2017.01.046

    Article  CAS  Google Scholar 

  64. Huang X, Hu N, Gao R, Wang Y, Wei H, Zhang Y (2012) Reduced graphene oxide–polyaniline hybrid: preparation, characterization and its applications for ammonia gas sensing. J Mater Chem 22:22488–22495. https://doi.org/10.1039/C2JM34340A

    Article  CAS  Google Scholar 

  65. Bai X, Ji H, Gao P, Zhang Y, Sun X (2014) Morphology, phase structure and acetone sensitive properties of copper-doped tungsten oxide sensors. Sens and Actuators B: Chem 193:100–106. https://doi.org/10.1016/j.snb.2013.11.059

    Article  CAS  Google Scholar 

  66. Kulkarni S, Patil P, Naik J (2018) Synthesis and evaluation of gas sensing properties of PANI, PANI/SnO2 and PANI/SnO2/rGO nanocomposites at room temperature. Inorg Chem Commun 96:90–96. https://doi.org/10.1016/j.inoche.2018.08.008

    Article  CAS  Google Scholar 

  67. Gaikwad G, Patil P, Patil D, Naik J (2017) Synthesis and evaluation of gas sensing properties of PANI based graphene oxide nanocomposites. Mater Sci Eng B 218:14–22. https://doi.org/10.1016/j.mseb.2017.01.008

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the financial support of Indo–Belarus joint project (Project no. DST/INT/BLR/P-13/2016) by Department of Science and Technology (DST), New Delhi (India). One of the authors Rohan Sagar acknowledge the University Grant Commission (UGC), New Delhi (India), for a providing research fellowship (Award number RGNF-2017-18-SC-UTT-29088).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. S. Gaur.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sagar, R., Gaur, M.S. & Rogachev, A.A. Nanoarchitecture of PANI/CNT/GO hybrid nanocomposites with enhanced dielectric and gas sensing properties. Polym. Bull. 80, 1773–1793 (2023). https://doi.org/10.1007/s00289-022-04127-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-022-04127-z

Keywords

Navigation