Skip to main content

Advertisement

Log in

Enhanced energy storage in polyvinylidenefluoride (PVDF) + BaZrO3 electroactive nanocomposites

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

PVDF + BaZrO3 electroactive nanocomposite thin film has been prepared by solution casting method. The structural analysis was carried out by using x-ray diffraction pattern and atomic force microscopy (AFM). Generally, the performance of dielectric capacitors toward higher energy density and higher operating temperatures has been drawing increased interest. In this regard, the present study was focussed on the fabrication and characterization of PVDF + BaZrO3 electroactive nanocomposites in view of enhancing the energy density at elevated temperature. Cole-Cole plot is an agreement with multiple relaxation process in electroactive nanocomposites. Dielectric energy storage performance is assessed for PVDF nanocomposites with different wt% of BaZrO3 at different frequencies and temperature. It has been observed that with increase of temperature, the permittivity increased while the energy density slightly decreased but significantly higher than pure polymer PVDF. A high energy density of 6.88 J/cm3 was obtained for BaZrO3 electroactive nanocomposites at 50 °C and 5.06 J/cm3 at 70 °C. Overall, the testing results indicate that using nanocomposites of PVDF and BaZrO3 as a dielectric component is promising for implementation to preserve high energy density values up to temperatures of 70 °C.The enhancement of dielectric permittivity and the energy density is attributed due to increase of interracial charge density. The effect of BaZrO3 nanoparticles in energy density of PVDF is first time reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Hilczer B, Kulek J, Markiewicz E, Kosec M, Malic B (2002) Dielectric relaxation in ferroelectric PZT-PVDF nanocomposites. J Non-Cryst Solid 5:167–173. https://doi.org/10.1016/S0022-3093(02)01103-1 

    Article  Google Scholar 

  2. Lewis TJ (2004) Interfaces and nanodielectrics are synonymous. Proc IEEE Int Confon Solid Dielectr Toulouse Fr 2:792–795

    Google Scholar 

  3. Chiang CK, Popielarz R (2002) Polymer composites with high dielectric constant. Ferroelectric 275(1):1–9. https://doi.org/10.1080/00150190214285

    Article  CAS  Google Scholar 

  4. Kontos GA, Soulintzis AL, Karahaliou PK, Psarras GC, Georga SN, Krontiras CA, Pisanias MN (2007) Electrical relaxation dynamics in TiO2-polymer matrix composites. Express Polym Lett 1(12):781–789. https://doi.org/10.3144/expresspolymlett.2007.108

    Article  CAS  Google Scholar 

  5. Psarras GC, Gatos KG, Karahaliou PK, Georga SN, Krontiras CA, Karger-Kocsis J (2007) Relaxation phenomena in rubber/layered silicate nanocomposites. Expre Polym Letters 1(12):837–845. https://doi.org/10.3144/expresspolymlett.2007.116

    Article  CAS  Google Scholar 

  6. Ishida H, Campbell S, Blackwell J (2000) General approach to polymer nanocomposite preparation. Chem Mater 12(5):1260–1267. https://doi.org/10.1021/cm990479y

    Article  CAS  Google Scholar 

  7. Zeng S, Baillargeat D, Ho H, Yong K (2014) Nanomaterials enhanced surface plasmon resonance for biological and chemical sensing applications. Chem Soc Rev 43(10):3426–3452. https://doi.org/10.1039/c3cs60479a

    Article  CAS  PubMed  Google Scholar 

  8. Dang Z, Wang H, Zhang Y, Qi J (2005) Morphology and dielectric property of homogenous BaTiO3/PVDF nanocomposites prepared via the natural adsorption action of nanosized BaTiO3. Macromol Rapid Commun 26(14):1185–1189. https://doi.org/10.1002/marc.200500137

    Article  CAS  Google Scholar 

  9. Hong J, Winberg P, Schadler L, Siegel R (2005) Dielectric properties of zinc oxide/low density polyethylene nanocomposites. Mater Lett 59(4):473–476. https://doi.org/10.1016/j.matlet.2004.10.036

    Article  CAS  Google Scholar 

  10. Dang Z, Shen Y, Nan C (2002) Dielectric behavior of three-phase percolative Ni–BaTiO3/polyvinylidene fluoride composites. Appl Phys Lett 81(25):4814–4816. https://doi.org/10.1063/1.1529085

    Article  CAS  Google Scholar 

  11. Gregorio JR, Cestari M, Bernardino F (1996) Dielectric behaviour of thin films of β-PVDF/PZT and β-PVDF/BaTiO3 composites. J Mater Sci 31(11):2925–2930. https://doi.org/10.1007/BF00356003

    Article  CAS  Google Scholar 

  12. Dan C, Min W, Wei-De Z, Tianxi L (2009) Preparation and characterization of poly(vinylidene fluoride) nanocomposites containing multiwalled carbon nanotubes. J Appl Polym Sci 113:644–650. https://doi.org/10.1002/app.29311

    Article  CAS  Google Scholar 

  13. Xing C, Guan J, Li Y, Li J (2014) Effect of a room-temperature ionic liquid on the structure and properties of electrospun poly(vinylidene fluoride) nanofibers. J Appl Mater Interface 6:4447–4457.https://doi.org/10.1021/am500061v

    Article  CAS  Google Scholar 

  14. Hema M, Tamilselvi P (2016) Lithium ion conducting PVA:PVdF polymer electrolytes doped with nano SiO2 and TiO2 filler. J Phys Chem Solids 97:42–48.https://doi.org/10.1016/j.jpcs.2016.04.008

    Article  CAS  Google Scholar 

  15. Sarjeant WJ, Zirnheld J (1999) Handbook of low and high dielectric constant materials and their applications. Academic Press, UK. 2: 423–491. https://doi.org/10.1016/B978-012513905-2/50023-6

  16. Kao KC (2004) Dielectric phenomena in solids. Elsevier Academic Press, San Diego

    Google Scholar 

  17. Wang TT, Herbert JM, Glass AM (1988) The applications of ferroelectric polymers, 1st edn. Blackie, New York, p 118–379.

    Google Scholar 

  18. Lines M, Glass A (1977) Principles and applications of ferroelectrics and related materials. Clarendon Press, Oxford

    Google Scholar 

  19. Dang ZM, Zhou T, Yao SH (2009) Advanced calcium copper titanate/polyimide functional hybrid films with high dielectric permittivity. Adv Mater 21(20):2077–2082. https://doi.org/10.1002/adma.200803427

    Article  CAS  Google Scholar 

  20. Prakash BS, Varma KBR (2007) Dielectric behavior of CCTO/epoxy and al-CCTO/epoxy composites. Compos Sci Technol 67(11):2363–2368. https://doi.org/10.1016/j.compscitech.2007.01.010

    Article  CAS  Google Scholar 

  21. Srivastava A, Maiti P, Kumar D, Parkash O (2014) Mechanical and dielectric properties of CaCu3Ti4O12 and La doped CaCu3Ti4O12 poly(vinylidene fluoride) composites. Compos Sci Technol 93:83–89. https://doi.org/10.1016/j.compscitech.2013.12.025

    Article  CAS  Google Scholar 

  22. Srivastava A, Jana KK, Maiti P, Kumar D, Parkash O (2014) Mechanical and dielectric behaviour of CaCu3Ti4O12 and Nb doped CaCu3Ti4O12 poly(vinylidene fluoride) composites. J Compos 2014:769379–769389. https://doi.org/10.1155/2014/769379

    Article  Google Scholar 

  23. Yong W, Xin Z, Qin C, Baojin C, Qiming Z (2010) Recent development of high energy density polymers for dielectric capacitors. IEEE Trans Dielectr Electr Insul 17(4):1036–1042.https://doi.org/10.1109/TDEI.2010.5539672

    Article  Google Scholar 

  24. Jayanthi S, Sundaresan B (2014) Effect of ultrasonic irradiation and TiO2 on the determination of electrical and dielectric properties of PEO–P(VdF-HFP)–LiClO4-based nanocomposite polymer blend electrolytes. Ionics 21(3):705–717. https://doi.org/10.1007/s11581-014-1230-0

    Article  CAS  Google Scholar 

  25. Shaohui L, Shaomei X, Bo S, Jiwei Z, Ling BK (2016) Dielectric properties and energy storage densities of poly(vinylidenefluoride) nanocomposite with surface hydroxylated cube shaped Ba0.6 Sr0.4 TiO3 nanoparticles. Polymers 8(2):45. https://doi.org/10.3390/polym8020045

    Article  CAS  Google Scholar 

  26. Hanford WE, Joyce RM (1946) Polytetrafluoroethylene. J Am Chem Soc 68(10):2082–2085. https://doi.org/10.1021/ja01214a062

    Article  CAS  Google Scholar 

  27. Martins P, Lopes AC, Lanceros-Mendez S (2014) Electroactive phases of poly(vinylidene fluoride) determination processing and applications. Prog Polym Sci 39(4):683–706. https://doi.org/10.1016/j.progpolymsci.2013.07.006

    Article  CAS  Google Scholar 

  28. Hartono A, Satira S, Djamal M, Ramli R, Bahar H, Sanjaya E (2013) Effect of mechanical treatment temperature on electrical properties and crystallite size of PVDF film. Adv Mater Phys Chem 3(1):71–76.https://doi.org/10.4236/ampc.2013.31011

    Article  CAS  Google Scholar 

  29. Yu S, Zheng W, Yu W, Zhang Y, Jiang Q, Zhao Z (2009) Formation mechanism of β-phase in PVDF/CNT composite prepared by the sonication method. Macromols 42(22):8870–8874. https://doi.org/10.1021/ma901765j

    Article  CAS  Google Scholar 

  30. Mallick B, Patel T, Behera RC, Sarangi SN, Sahu SN, Choudhar RK (2006) Microstrain analysis of proton irradiated PET microfiber. Nucl Instrum Methods Phys Res Sect B 248(2):305–310. https://doi.org/10.1016/j.nimb.2006.04.153

    Article  CAS  Google Scholar 

  31. Madani M (2010) Structure optical and thermal decomposition characters of LDPE graft copolymers synthesized by gamma irradiation. Bull Mater Sci 33(1):65–73. https://doi.org/10.1007/s12034-010-0009-9

    Article  CAS  Google Scholar 

  32. Vij A, Chawla AK, Kumar R, Lochab SP, Chandra R, Singh N (2010) Effect of 120MeV Ag 9+ ion beam irradiation on the structure and photoluminescence of SrS:Ce nanostructures. Phys B Condens Matter 405(11):2573–2576. https://doi.org/10.1016/j.physb.2010.03.034

    Article  CAS  Google Scholar 

  33. Singh P, Kumar R (2014) Influence of high-energy ion irradiation on the structural, optical, and chemical properties of polytetrafluoroethylene. Adv Polym Technol 33(3):21410–21419.https://doi.org/10.1002/adv.21410

    Article  CAS  Google Scholar 

  34. Shah S, Singh NL, Qureshi A, Singh D, Singh KP, Shrinet V, Tripathi A (2008) Dielectric and structural modification of proton beam irradiated polymer composite. Nucl Instrum Methods Phys Res Sect B 266(8):1768–1774. https://doi.org/10.1016/j.nimb.2007.11.061

    Article  CAS  Google Scholar 

  35. Kulshrestha V, Agarwal G, Awasthi K, Tripathi B, Acharya NK, Vyas D, Saraswat VK, Vijay YK, Jain IP (2010) Microstructure change in poly (ethersulfone) films by swift heavy ions. Micron 41(4):390–394. https://doi.org/10.1016/j.micron.2009.12.003

    Article  CAS  PubMed  Google Scholar 

  36. Ya L, Qiong FU, Lili L, Weiping L (2016) Electrical and mechanical properties of the dielectric capacitor film based on polyvinylidene fluoride and aromatic polythiourea. J Electron Mater 45(10):5152–5157. https://doi.org/10.1007/s11664-016-4747-3

    Article  CAS  Google Scholar 

  37. Kwonwoo S, Sang Yoon Y, Chanwoo Y, Hayoung J, Chan Eon P (2007) Effects of polar functional groups and roughness topography of polymer gate dielectric layers on pentacene field-effect transistors. Org Electron 8:336–342. https://doi.org/10.1016/j.orgel.2006.12.007

    Article  CAS  Google Scholar 

  38. Maqsood A, Khan K (2011) Structural and microwave absorption properties of Ni(1−x)Co(x)Fe2O4 (0.0 ≤ x ≤ 0.5) nanoferrites synthesized via co-precipitation route. J Alloys Compd 509(7):3393–3397. https://doi.org/10.1016/j.jallcom.2010.12.082

    Article  CAS  Google Scholar 

  39. Dou X, Liu X, Zhang Y, Feng H, Chen JF, Du S (2009) Improved dielectric strength of barium titanate-polyvinylidene fluoride nanocomposite. Appl Phys Lett 95(13):132904–132908. https://doi.org/10.1063/1.3242004

    Article  CAS  Google Scholar 

  40. Cullity BD, Stock SR (2001) Elements of X-ray diffraction, 3rd edn. Prentice Hall, New York

    Google Scholar 

  41. Hussain AMP, Kumar A, Singh F, Awasthi J (2006) Effects of 160 MeV Ni12+ ion irradiation on HCl doped polyaniline electrode. J Phys D Appl Phys 39(4):750–755. https://doi.org/10.1088/0022-3727/39/4/023

    Article  CAS  Google Scholar 

  42. Zhang QM, Fang F, Cheng ZY, Xia F, Hou Y (2001) Critical thickness of crystallization and discontinuous change in ferroelectric behavior with thickness in ferroelectric polymer thin films. J Appl Phys 89(5):2613–2618. https://doi.org/10.1063/1.1344585

    Article  CAS  Google Scholar 

  43. Hahn B, Wendorff J, Yoon DY (1985) Dielectric relaxation of crystal-amorphous fluoride and its blends with poly(methyl methacrylate). Macromolecules 18(4):718–721. https://doi.org/10.1021/ma00146a024

    Article  CAS  Google Scholar 

  44. Ando Y, Hanada T, Saitoh K (1994) Quantitative confirmation of the crystal-amorphous interphase in semicrystalline poly (vinylidene fluoride) and poly (vinylidene fluoride)/poly ( ethyl methacrylate) blends. J Polym Sci B Polym Phys 32(1):179–185. https://doi.org/10.1002/polb.1994.090320121

    Article  CAS  Google Scholar 

  45. Gregorio R (1999) Effect of crystalline phase, orientation and temperature on the dielectric properties of poly (vinylidene fluoride) (PVDF). J of Mater Sci 34(18):4489–4500. https://doi.org/10.1023/A:1004689205706

    Article  CAS  Google Scholar 

  46. Zhang QM, Li HF, Poh M, Xia F, Cheng ZY, HS X, Huang C (2002) An all-organic composite actuator material with a high dielectric constant. Nature 419(694):284–287. https://doi.org/10.1038/nature01021

    Article  CAS  PubMed  Google Scholar 

  47. Li JY (2003) Exchange coupling in P(VDF-TrFE) copolymer based all-organic composites with giant electrostriction. Phys Rev Lett 90(21):217601/1–217601/4.https://doi.org/10.1103/PhysRevLett.90.217601

    Article  CAS  Google Scholar 

  48. Lewis TJ (2014) Charge transport in polyethylene nano dielectrics. IEEE Trans Dielectr Electr Insul 21(2):497–502. https://doi.org/10.1109/TDEI.2013.004173

    Article  CAS  Google Scholar 

  49. Lewis TJ, Llewellyn JP (2013) Electrical conduction in polyethylene: the role of positive charge and the formation of positive packets. J Appl Phys 113(22):223705–223718. https://doi.org/10.1063/1.4810857

    Article  CAS  Google Scholar 

  50. Bai Y, Cheng ZY, Bharti V, HS X, Zhang QM (2000) High-dielectric-constant ceramic-powder polymer composites. Appl Phys Lett 76(25):3804–3806. https://doi.org/10.1063/1.126787

    Article  CAS  Google Scholar 

  51. Lu H, Zhang X (2006) Investigation of MWS relaxation in nylon 1010 using dielectric relaxation spectroscopy. J Macromol Sci Phys 45(5):933–944. https://doi.org/10.1080/00222340600865127

    Article  CAS  Google Scholar 

  52. Chen J, Wang X, Yu X, Yao L, Duan Z, Fan Y, Jiang Y, Zhou Y, and Pan Z (2017) High dielectric constant and low dielectric loss in poly(vinylidene fluoride) nanocomposites via a small loading of two-dimensional Bi2Te3@Al2O3 hexagonal nanoplates. J Mater Chem C 6:271-279. https://doi.org/10.1039/C7TC04758D

    Article  Google Scholar 

  53. Tanaka T (2005) Dielectric nanocomposites with insulating properties. IEEE Trans Dielectr Electr Insulat 12(5):914–928. https://doi.org/10.1109/TDEI.2005.1522186

    Article  CAS  Google Scholar 

  54. Santanu S, Thomas MJ (2008) Permittivity and tan delta characteristics of epoxy nanocomposites in the frequency range of 1 MHz–1 GHz. IEEE Trans Dielectr Electr Insulat 15(1):1070-9878. https://doi.org/10.1109/T-DEI.2008.4446731

    Article  Google Scholar 

  55. Samiha TB (2000) Numerical methods for the calculation of the Cole-Cole parameters. Egypt J Sol 23(2):179–188

    Google Scholar 

  56. Rinehart JD, Meihaus KR, Long JR (2010) Observation of a secondary slow relaxation process for the field-induced single-molecule magnet U(H2BPZ2)3. J Am Chem Soc 132(22):7572–7573. https://doi.org/10.1021/ja1009019

    Article  CAS  PubMed  Google Scholar 

  57. Mendes SF, Costa CM, Caparros C (2012) Effect of filler size and concentration on the structure and properties of poly(vinylidene fluoride)/BaTiO3 nanocomposites. J Mater Sci 47(3):1378–1388. https://doi.org/10.1007/s10853-011-5916-7

    Article  CAS  Google Scholar 

  58. Ashok KB, Edwards ME, Alomari A, Elkhaldy A (2015) Dielectric behavior of P(VDF-TrFE)/PZT nanocomposites films doped with multi-walled carbon nanotubes (MWCNT). Am J Mater Sci 5(3A):55–61. https://doi.org/10.5923/s.materials.201502.09

    Article  Google Scholar 

  59. Md R, Shuvo MAI, Karim H, Delfin D, Afrin S, Linn Y (2015) Temperature influence on dielectric energy storage of nanocomposites. Ceram Int 41:1807–1813. https://doi.org/10.1016/j.ceramint.2014.09.127

    Article  CAS  Google Scholar 

  60. Yang W, Li H, Lin J, Chen G, Wang Y, Wang L, Lu H, Chen L, Lei Q (2017) A novel all-organic DIPAB/PVDF composite film with high dielectric permittivity. J Mater Sci Mater Electron 28(13):9658–9666. https://doi.org/10.1007/s10854-017-6716-x

    Article  CAS  Google Scholar 

  61. Liu S, Xiu S, Shen B, Zhai J, Kong LB (2016) Dielectric properties and energy storage densities of poly(vinylidenefluoride) nanocomposite with surface hydroxylated cube shaped Ba0.6 Sr0.4TiO3 nanoparticles. Polymers 8(2):45–56. https://doi.org/10.3390/polym8020045

    Article  CAS  Google Scholar 

  62. Siddabattunia S, Schumana TP, Dogan F (2011) Improved polymer nanocomposite dielectric breakdown performance through barium titanate to epoxy interface control. Mater Sci Eng B 176(18):1422–1429. https://doi.org/10.1016/j.mseb.2011.07.025

    Article  CAS  Google Scholar 

  63. Wang L, Gao F, Xu J, Zhang K, Wang M, Mengjie Q (2016) Fabrication Characterisation and dielectric properties of KH550 modified BST/PVDF nanocomposites with high dielectric strength. IET Journal High Volt 4(1):158–165. https://doi.org/10.1049/hve.2016.0065

    Article  Google Scholar 

  64. Hu P, Song Y, Liu H, Shen Y, Lin Y, Nan CW (2013) Largely enhanced energy density inflexible P(VDF-TrFE) nanocomposites by surface-modified electrospun BaSrTiO3 fibers. J Mater Chem A 1(5):1688–1693. https://doi.org/10.1039/C2TA00948J

    Article  CAS  Google Scholar 

  65. Tang H, Lin Y, Andrews C, Sodano HA (2011) Nanocomposites with increased energy density through high aspect ratio PZT nanowires. Nanotechnology 22(1):015702–015711. https://doi.org/10.1088/0957-4484/22/1/015702

    Article  CAS  PubMed  Google Scholar 

  66. Kim P, Doss NM, Tillotson JP, Hotchkiss PJ, Pan MJ, Marder SR, Li J, Calame JP, Perry JW (2009) High energy density nanocomposites based on surface-modified BaTiO3 and a ferroelectric polymer. ACS Nano 3(9):2581–2592. https://doi.org/10.1021/nn9006412

    Article  CAS  PubMed  Google Scholar 

  67. Xie L, Huang X, Li BW, Zhi C, Tanaka T, Jiang P (2013) Core–satellite Ag@ BaTiO3 nanoassemblies for fabrication of polymer nanocomposites with high discharged energy density high breakdown strength and low dielectric loss. Chem Phys 15(40):17560–17569. https://doi.org/10.1039/C3CP52799A

    Article  CAS  Google Scholar 

  68. Rabuffi M, Picci G (2002) Status quo and future prospects for metallized polypropylene energy storage capacitors. IEEE Tran Plasma Sci 30(5):1939–1942. https://doi.org/10.1109/PPPS.2001.961090

    Article  CAS  Google Scholar 

  69. Tang H, Sodano HA (2013) Ultra high energy density nanocomposite capacitors with fast discharge using Ba0. 2Sr0. 8TiO3 nanowires. Nano Lett 13(4):1373–1379. https://doi.org/10.1021/nl3037273

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Financial assistance from Indo-Belarusian Scientific Cooperation, DST, New Delhi (India) (letter no.INT/BLR/P-13/2016) is gratefully acknowledged. Authors are thankful to the Directors, AIRF, JNU, New Delhi (India) for providing XRD characterization facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. S. Gaur.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sagar, R., Gaur, S.S., Grace, A.N. et al. Enhanced energy storage in polyvinylidenefluoride (PVDF) + BaZrO3 electroactive nanocomposites. Ionics 24, 1965–1978 (2018). https://doi.org/10.1007/s11581-018-2436-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-018-2436-3

Keywords

Navigation