Skip to main content
Log in

Mixed Morphology, Inflated e- h+ Recombination Rate and Augmented Optical Absorbance Capacity of PANI/PPY/CdS Nanocomposite as Electron Transport Layer for OLED Application

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

Facile synthesis of PANI/PPY/CdS ternary nanocomposite resulting from the integration of polyaniline (PANI), polypyrrole (PPY) and CdS using chemical oxidative polymerization technique was carried out in the laboratory. The study included comparative investigation of CdS incorporated polyaniline (PANI/CdS) and CdS incorporated polypyrrole (PPY/CdS) binary nanocomposite with PANI/PPY/CdS. The embodiment of CdS into PANI and PPY proved to be very effective in enhancing the optoelectronic properties. The formations of synthesized materials were confirmed by XRD, FTIR and FT-Raman spectroscopic analyses. The optimized ternary nanocomposite showed reduced optical band gap (~ 1.48 eV) by UV–visible spectra analysis. Photoluminescence (PL) spectra showed the highest PL intensity for optimized PANI/PPY/CdS nanocomposite due to high non-radiative electron–hole recombination rate. Ohmic conductance (~ 0.114 S) for the optimized nanocomposite was obtained by J–V characteristics plot. The dielectric analysis confirmed that PANI/PPY/CdS ternary nanocomposite showed highest dielectric constant and low dielectric loss as compared to other binary nanocomposites. These optimized optical, electrical and dielectric properties confirmed that the as-prepared PANI/PPY/CdS nanocomposite can be used as an efficient electron transport layer for OLEDs application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. C. Zhan, G. Yu, Y. Lu, L. Wang, E. Wujcik, S. Wei, J. Mater. Chem. C 5, 1569–1585 (2017)

    Article  CAS  Google Scholar 

  2. J.D. Stenger-Smith, Prog. Polym. Sci. 23, 57–79 (1998)

    Article  CAS  Google Scholar 

  3. C.H. Chang, C.L. Ho, Y.S. Chang, I.C. Lien, C.H. Lin, Y.W. Yang, J.L. Liao, Y. Chi, J. Mater. Chem. C 1, 2639 (2013)

    Article  CAS  Google Scholar 

  4. P.J. Hesketh, D. Misra, S. Takamatsu, T. itoh, A. Khosla, A.H. Saheb, M. Leon, M. Josowicz, Electrochem. Soc. Interface 21, 61 (2012)

    Article  Google Scholar 

  5. Y. Karzazi, J. Mater. Environ. Sci. 5, 1–12 (2014)

    Google Scholar 

  6. B. Scrosati, Mater. Sci. Forum 42, 207–220 (1991)

    Article  Google Scholar 

  7. Z. Shu, E. Beckert, R. Eberhardt, A. Tunnermann, J. Mater. Chem. C 5, 11590–11597 (2017)

    Article  CAS  Google Scholar 

  8. G. Xu, Q. Xu, A. Qin, J. Cheng, N. Wang, J. Wei, C. Zhang, Z. Yang, B.Z. Tang, J. Mater. Chem. C 1, 1717 (2013)

    Article  CAS  Google Scholar 

  9. R. Kandulna, R.B. Choudhary, Polym. Bull. 75, 3089–3107 (2018)

    Article  CAS  Google Scholar 

  10. A. Fallahi, F.A. Taromi, A. Mohebbi, J.D. Yuen, M. Shahinpoor, J. Mater. Chem. C 2, 6491–6501 (2014)

    Article  CAS  Google Scholar 

  11. A.T. Vicente, A. Araujo, M.J. Mendes, D. Nunes, M.J. Oliveira, O. Sanchez-Sobrado, M.P. Ferreira, H. Aguas, E. Fortunato, R. Martins, J. Mater. Chem. C 6, 3143–3181 (2018)

    Article  Google Scholar 

  12. R. Kandulna, R.B. Choudhary, R. Singh, B. Purty, J. Mater. Sci. Mater. Electron. 29, 5893–5907 (2018)

    Article  CAS  Google Scholar 

  13. R. Kandulna, R.B. Choudhary, P. Maji, J. Inorg. Organomet. Polym. Mater. 27, 1760–1769 (2017)

    Article  CAS  Google Scholar 

  14. W. Zhu, X.L. Chen, J. Chang, R.M. Yu, H. Li, D. Liang, X.Y. Wu, Y. Wang, C.Z. Lu, J. Mater. Chem. C 6, 7242–7248 (2018)

    Article  CAS  Google Scholar 

  15. Z. Li, J. Kong, F. Wang, C. He, J. Mater. Chem. C 5, 5283–5298 (2017)

    Article  CAS  Google Scholar 

  16. P. Pareo, L. Carbone, F. Mariano, A. Zacheo, G. Accorsi, V. Arima, G. Gigli, M. Manca, J. Mater. Chem. C 4, 5001–5009 (2016)

    Article  CAS  Google Scholar 

  17. M.S. Raghu, K. Yogesh Kumar, S. Rao, T. Aravinda, S.C. Sharma, M.K. Prashanth, Phys. B Condens. Matter 537, 336–345 (2018)

    Article  CAS  Google Scholar 

  18. A. Madani, B. Nessark, R. Boukherroub, M.M. Chehimi, J. Electroanal. Chem. 650, 176–181 (2011)

    Article  CAS  Google Scholar 

  19. B. Purty, R.B. Choudhary, A. Biswas, G. Udayabhanu, Mater. Chem. Phys. 216, 213–222 (2018)

    Article  CAS  Google Scholar 

  20. B. Yeole, T. Sen, D.P. Hansora, S. Mishra, J. Appl. Polym. Sci. 132, 42379 (2015)

    Article  CAS  Google Scholar 

  21. J. Wang, Z. Wu, K. Hu, X. Chen, H. Yin, J. Alloys Compd. 619, 38–43 (2015)

    Article  CAS  Google Scholar 

  22. S. Yilmaz, S.B. Toreli, I. Polat, M.A. Olgar, M. Tomakin, E. Bacaksiz, Mater. Sci. Semicond. Process. 60, 45–52 (2017)

    Article  CAS  Google Scholar 

  23. P. Khanna, S. Lonkar, V.V.V. Subbarao, K.W. Jun, Mater. Chem. Phys. 87, 49–52 (2004)

    Article  CAS  Google Scholar 

  24. B.T. Raut, M.A. Chougule, S. Sen, R.C. Pawar, C.S. Lee, V.B. Patil, Ceram. Int. 38, 3999–4007 (2012)

    Article  CAS  Google Scholar 

  25. D.C. Tiwari, R. Jain, S. Sharma, J. Appl. Polym. Sci. 110, 2328–2336 (2008)

    Article  CAS  Google Scholar 

  26. A. Singh, N.P. Singh, R.A. Singh, Bull. Mater. Sci. 34, 1017–1026 (2011)

    Article  CAS  Google Scholar 

  27. R. Kandulna, R.B. Choudhary, Opt. Int. J. Light Electron. Opt. 144, 40–48 (2017)

    Article  CAS  Google Scholar 

  28. S. Benyakhou, A. Belmokhtar, A. Zehhaf, A. Benyoucef, J. Mol. Struct. 1150, 580–585 (2017)

    Article  CAS  Google Scholar 

  29. J. Wilson, S. Radhakrishnan, C. Sumathi, V. Dharuman, Sens. Actuators B Chem. 171–172, 216–222 (2012)

    Article  CAS  Google Scholar 

  30. Y. Li, Q. Zhang, X. Zhao, P. Yu, L. Wu, D. Chen, J. Mater. Chem. 22, 1884–1892 (2012)

    Article  CAS  Google Scholar 

  31. W. Lin, K. Xu, M. Xin, J. Peng, Y. Xing, M. Chen, RSC Adv. 4, 39508 (2014)

    Article  CAS  Google Scholar 

  32. Y. Duan, J. Liu, Y. Zhang, T. Wang, RSC Adv. 6, 73915–73923 (2016)

    Article  CAS  Google Scholar 

  33. G.V. Ramana, B. Padya, V.V.S.S. Srikanth, P.K. Jain, G. Padmanabham, G. Sundararajan, Carbon N. Y. 49, 5239–5245 (2011)

    Article  CAS  Google Scholar 

  34. K. Yamani, R. Berenguer, A. Benyoucef, E. Morallón, J. Therm. Anal. Calorim. 1–12 (2018)

  35. P. Rodriguez, N. Munoz-Aguirre, E.S.M. Martinez, G. Gonzalez, O. Zelaya, J. Mendoza, Appl. Surf. Sci. 255, 740–742 (2008)

    Article  CAS  Google Scholar 

  36. Y. He, Appl. Surf. Sci. 249, 1–6 (2005)

    Article  CAS  Google Scholar 

  37. S. Daikh, F.Z. Zeggai, A. Bellil, A. Benyoucef, J. Phys. Chem. Solids 121, 78–84 (2018)

    Article  CAS  Google Scholar 

  38. M. Majumder, R.B. Choudhary, A.K. Thakur, I. Karbhal, RSC Adv. 7, 20037–20048 (2017)

    Article  Google Scholar 

  39. A.K. Thakur, R.B. Choudhary, M. Majumder, G. Gupta, Electrochim. Acta 251, 532–545 (2017)

    Article  CAS  Google Scholar 

  40. P.S. Khiew, N.M. Huang, S. Radiman, M.S. Ahmad, Mater. Lett. 58, 516–521 (2004)

    Article  CAS  Google Scholar 

  41. F. Chouli, I. Radja, E. Morallon, A. Benyoucef, Polym. Compos. 38, E254–E260 (2017)

    Article  CAS  Google Scholar 

  42. R. Elilarassi, S. Maheshwari, G. Chandrasekaran, Optoelectron. Adv. Mater. Rapidcommun. 4, 309–312 (2010)

    CAS  Google Scholar 

  43. Y. Lin, J. Zhang, E.H. Sargent, E. Kumacheva, Appl. Phys. Lett. 81, 3134–3136 (2002)

    Article  CAS  Google Scholar 

  44. Q. Xiao, C. Xiao, Appl. Surf. Sci. 255, 7111–7114 (2009)

    Article  CAS  Google Scholar 

  45. A. Patsidis, G.C. Psarras, Express Polym. Lett. 2, 718–726 (2008)

    Article  CAS  Google Scholar 

  46. S. Lal, S.K. Tripathi, R. Kumar, N. Sood, S. Khosla, J. Inf. Disp. 16, 49–55 (2015)

    Article  CAS  Google Scholar 

  47. B.G. Soares, M.E. Leyva, G.M.O. Barra, D. Khastgir, Eur. Polym. J. 42, 676–686 (2006)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors thanks to express Indian institute of technology (Indian school of mines), Dhanbad, India for financial support and acknowledge DST, New Delhi for using PL spectrometer (project no. SR/FST/PSI-004/2013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ram Bilash Choudhary.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Verma, A., Choudhary, R.B. Mixed Morphology, Inflated e- h+ Recombination Rate and Augmented Optical Absorbance Capacity of PANI/PPY/CdS Nanocomposite as Electron Transport Layer for OLED Application. J Inorg Organomet Polym 29, 444–455 (2019). https://doi.org/10.1007/s10904-018-1015-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-018-1015-4

Keywords

Navigation