Skip to main content
Log in

Structural, thermal and mechanical properties of composites of poly(butylene adipate-co-terephthalate) with wheat straw microcrystalline cellulose

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Structural, thermal and mechanical properties of the compostable composites comprising a biodegradable aliphatic–aromatic copolyester (namely, the poly(butylene adipate-co-terephthalate; PBAT), and microcrystalline cellulose (MCC) derived from agricultural waste, the wheat stalk, were investigated. Purely physical interaction between the components was found to be responsible to get the MCC phase quite uniformly embedded in the PBAT matrix, the latter being the dominating component of the composites surface. There were two distinct thermally activated degradation regimes characterized by separate activation processes corresponding to the decomposition of the MCC and the PBAT phases, respectively. The physically bound and rather weak but large PBAT–MCC interfacial areas provoked more rapid thermal degradation of the composites compared to the pure components. While the PBAT acted as a highly ductile material upon tensile loading, the composites maintained high ductility only up to 20% by weight of the MCC. The drastic reduction in the ductility for higher filler loading was attributed to the possible void formation at the interfacial region followed by crack initiation and propagation leading eventually to the premature specimen fracture. The composite materials thus fabricated were hence found to suit for low-load bearing applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Srinivas K, Naidu AL, Bahubalendruni MVAR (2017) A review on chemical and mechanical properties of natural fiber reinforced polymer composites. Int J Performability Eng 13:189–200. https://doi.org/10.23940/ijpe.17.02.p8.189200

    Article  Google Scholar 

  2. Prasad AVR, Rao KM (2011) Mechanical properties of natural fibre reinforces polyester composites: Jowar, sisal and bamboo. Mater Des 32:4658–4663. https://doi.org/10.1016/j.matdes.2011.03.015

    Article  CAS  Google Scholar 

  3. Mandal A, Chakrabarty D (2014) Studies on the mechanical, thermal, morphological and barrier properties of nanocomposites based on poly(vinyl alcohol) and nanocellulose from sugarcane bagasse. J Ind Eng Chem 20:462–473. https://doi.org/10.1016/j.jiec.2013.05.003

    Article  CAS  Google Scholar 

  4. Wang KH, Wu TM, Shih YF, Huang CM (2008) Water bamboo husk reinforced poly(lactic acid) green composites. Polym Eng Sci 48:1833–1839. https://doi.org/10.1002/pen.21151

    Article  CAS  Google Scholar 

  5. Kowalczyk M, Piorkowska E, Kulpinski P, Pracella M (2011) Mechanical and thermal properties of PLA composites with cellulose nanofibers and standard size fibers. Compos Part A Appl Sci Manuf 42:1509–1514. https://doi.org/10.1016/j.compositesa.2011.07.003

    Article  CAS  Google Scholar 

  6. Vinayaka DL, Guna VK, Madhavi D, Arpitha M, Reddy N (2017) Ricinus communis plant residues as a source for natural cellulose fibers potentially exploitable in polymer. Ind Crops Prod 100:126–131. https://doi.org/10.1016/j.indcrop.2017.02.019

    Article  CAS  Google Scholar 

  7. Liu DY, Yuan XW, Bhattacharyya D, Easteal AJ (2010) Characterisation of solution cast cellulose nanofibre-reinforced poly(lactic acid). eXPRESS Polym Lett 4:26–31. https://doi.org/10.3144/expresspolymlett.2010.5

    Article  CAS  Google Scholar 

  8. Giri J, Lach R, Grellmann W, Susan ABH, Saiter JM, Henning S, Katiyar V, Adhikari R (2019) Compostable composites of wheat stalk microcrystalline cellulose and poly(butylene adipate-co-terephthalate): surface properties and degradation behaviour. J Appl Polym Sci 136:48149. https://doi.org/10.1002/app.48149

    Article  CAS  Google Scholar 

  9. Wu CS (2012) Characterization of cellulose acetate-reinforced aliphatic-aromatic copolyester composites. Carbohydr Polym 87:1249–1256. https://doi.org/10.1016/j.carbpol.2011.09.009

    Article  CAS  Google Scholar 

  10. Pires M, Murariu M, Cardoso AM, Bonnaud L, Dubois P (2020) Thermal degradation of poly(lactic acid)–zeolite composites produced by melt-blending. Polym Bull 77:2111–2137. https://doi.org/10.1007/s00289-019-02846-4

    Article  CAS  Google Scholar 

  11. de Oliveira AG, Morenos JF, de Sousa AFS, Escisio VA, Guimaraes MJdOC, da Silva ALN (2019) Composites based on high-density polyethylene, polylactide and calcium carbonate: Effect of calcium carbonate nanoparticles as co-compatibilizers. Polym Bull. https://doi.org/10.1007/s00289-019-02887-9

    Article  Google Scholar 

  12. Siyamak S, Ibrahim NA, Abdolmohammadi S, Yunus WMZBW, Rahman MZA (2012) Enhancement of mechanical and thermal properties of oil palm empty bunch fiber poly(butylenes adipate-co-terephthalate) biocomposites by matrix esterification using succinic anhydride. Molecules 17:1969–1991. https://doi.org/10.3390/molecules17021969

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ibrahim NA (2010) Effect of fiber treatment on the mechanical properties of kenaf fiber–ecoflex composites. J Reinf Plast Compos 29:2192–2198. https://doi.org/10.1177/0731684409347592

    Article  CAS  Google Scholar 

  14. Nagata M, Inaki K (2011) Biodegradable and photocurable multiblock copolymers with shape-memory properties from poly(ɛ-caprolactone) diol, poly(ethylene glycol), and 5-cinnamoyloxysophthalic acid. J Appl Polym Sci 120:3556–3564. https://doi.org/10.1002/app.33531

    Article  CAS  Google Scholar 

  15. Adhikari R, Bhandari NL, Causin V, Le HH, Radusch HJ, Michler GH, Saiter JM (2012) Study of morphology, mechanical properties, and thermal behavior of green aliphatic–aromatic copolyester/bamboo flour composites. Polym Eng Sci 52:2297–2303. https://doi.org/10.1002/pen.23335

    Article  CAS  Google Scholar 

  16. Cho MJ, Park BD (2011) Tensile and thermal properties of nanocellulose-reinforced poly(vinyl alcohol) Nanocomposites. J Ind Eng Chem 17:36–40. https://doi.org/10.1016/j.jiec.2010.10.006

    Article  CAS  Google Scholar 

  17. Zhou L, He H, Jiang C, Ma L, Yu P (2017) Cellulose nanocrystals from cotton stalk for reinforcement of poly(vinyl alcohol) composites. Cellulose Chem Technol 51:109–119

    CAS  Google Scholar 

  18. Sonia A, Dasan KP (2013) Cellulose microfibers (CMF)/poly(ethylene-co-vinyl acetate) (EVA) composites for the food packaging application: a study based on barrier and biodegradation behavior. J Food Eng 118:78–89. https://doi.org/10.1016/j.jfoodeng.2013.03.020

    Article  CAS  Google Scholar 

  19. Pokhrel S, Lach R, Le HH, Wutzler A, Grellmann W, Radusch HJ, Dhakal RP, Esposito A, Henning S, Yadav PN, Saiter JM, Heinrich G, Adhikari R (2016) Fabrication and characterization of completely biodegradable copolyester–chitosan blends: I. Spectroscopic and thermal characterization. Macromol Symp 366:23–34. https://doi.org/10.1002/masy.201650043

    Article  CAS  Google Scholar 

  20. Adsul M, Soni SK, Bhargava SK, Bansal V (2012) Facile approach for the dispersion of regenerated cellulose in aqueous system in the form of nanoparticles. Biomacromolecules 13:2890–2895. https://doi.org/10.1021/bm3009022

    Article  CAS  PubMed  Google Scholar 

  21. Cherian BM, Lopes Leao A, Ferreira de Souza S, Manzine Costa L, Molina de Olyveira G, Kottaisamy M, Nagarajan ER, Thomas S (2011) Cellulose nanocomposites with nanofibres isolated from pineapple leaf fibers for medical applications. Carbohydr Polym 86:1790–1798. https://doi.org/10.1016/j.carbpol.2011.07.009

    Article  CAS  Google Scholar 

  22. Hamedi MM, Hajian A, Fall AB, Hakansson K, Salajikova M, Lundell F, Wagberg L, Berglund LA (2014) Highly conducting, strong nanocomposites based on nanocellulose-assisted aqueous dispersions of single-wall carbon nanotubes. ACS Nano 8:2467–2476. https://doi.org/10.1021/nn4060368

    Article  CAS  PubMed  Google Scholar 

  23. Sanjay MR, Arpitha GR, Naik LL, Gopalakrisha K, Yogesha B (2016) Applications of natural fibers and its composites: an overview. Nat Resour 7:108–114. https://doi.org/10.4236/nr.2016.73011

    Article  CAS  Google Scholar 

  24. Das M, Chakraborty D (2009) The effect of alkalization and fiber loading on the mechanical properties of bamboo fiber composites, Part 1: Polyester resin matrix. J Appl Polym Sci 112:489–495. https://doi.org/10.1002/app.29342

    Article  CAS  Google Scholar 

  25. Teamsinsungvon A, Ruksakulpiwat Y, Jarukumjorn K (2010) Properties of biodegradable poly(lactic acid)/poly(butylene adipate-co-terephthalate)/calcium carbonate composites. Adv Mater Res 123–125:193–196. https://doi.org/10.4028/www.scientific.net/AMR.123-125.193

    Article  CAS  Google Scholar 

  26. Pereda M, Amica G, Racz I, Marcovinch NE (2011) Structure and properties of nanocomposite films based on the sodium caseinate and nanocellulose fibers. J Food Eng 103:76–83. https://doi.org/10.1016/j.jfoodeng.2010.10.001

    Article  CAS  Google Scholar 

  27. Trovatti E, Fernandes SCM, Rubatat L, da Silva PD, Freire CSR, Silverstre AJD, Neto CP (2012) Pullulan–nanofibrillated cellulose composites films with improved thermal and mechanical properties. Compos Sci Technol 72:1556–1561. https://doi.org/10.1016/j.compscitech.2012.06.003

    Article  CAS  Google Scholar 

  28. Yu T, Li Y (2014) Influence of poly(butylenes adipate-co-terephthalate) on the properties of the biodegradable composites base on ramie/poly(lactic acid). Compos Part A Appl Sci Manuf 58:24–29. https://doi.org/10.1016/j.compositesa.2013.11.013

    Article  CAS  Google Scholar 

  29. Pandey JP, Takagi H, Nakagaito AN, Saini DR, Ahn SH (2012) An overview on the cellulose based conducting composites. Compos Part B Eng 43:2822–2826. https://doi.org/10.1016/j.compositesb.2012.04.045

    Article  CAS  Google Scholar 

  30. ElNahrawy AM, Haroun AA, Hamadneh I, Al-Dujailid AH, Kamel S (2017) Conducting cellulose/TiO2 composites by in situ polymerization of pyrrole. Carbohydr Polym 168:182–190. https://doi.org/10.1016/j.carbpol.2017.03.066

    Article  CAS  PubMed  Google Scholar 

  31. Mulinari DR, Voorwald HJC, Cioffi MO, da Silva MLCP (2017) Cellulose fiber-reinforced high-density polyethylene composites—mechanical and thermal properties. J Compos Mater 51:1807–1815. https://doi.org/10.1177/0021998316665241

    Article  CAS  Google Scholar 

  32. Dayo AQ, Gao BC, Wang J, Liu WB, Derradji M, Shah AH, Babar AA (2017) Natural hemp fiber reinforced polybenzoxazine composites: curing behavior, mechanical and thermal properties. Compos Sci Technol 144:114–124. https://doi.org/10.1016/j.compscitech.2017.03.024

    Article  CAS  Google Scholar 

  33. Ng LF, Malingam SD, Selamat MZ, Mustafa Z, Bapokutty O (2020) A comparison study on the mechanical properties of composites based on kenaf and pineapple leaf fibres. Polym Bull 77:1449–1463. https://doi.org/10.1007/s00289-019-02812-0

    Article  CAS  Google Scholar 

  34. Siyamak S, Ibrahim NA, Abdolmohammadi S, Yunus WMZW, Rahman MZAB (2012) Effect of fiber esterification on fundamental properties of oil palm empty fruit bunch fiber/poly(butylenes adipate-co-terephthalate) biocomposites. Int J Mol Sci 13:1327–1346. https://doi.org/10.3390/ijms13021327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Pang JH, Liu X, Wu M, Wu YY, Zhang XM, Sun RC (2014) Fabrication and characterization of regenerated cellulose films using different liquids. J Spectrosc 214057:8. https://doi.org/10.1155/2014/214057

    Article  CAS  Google Scholar 

  36. Giri J, Adhikari R (2012) A brief review on extraction of nanocellulose and its application. Bibechana 9:81–87. https://doi.org/10.3126/bibechana.v9i0.7179

    Article  Google Scholar 

  37. Mueller S, Weder C, Foster EJ (2014) Isolation of cellulose nanocrytals from pseudostems of banana plants. RSC Adv 4:907–915. https://doi.org/10.1039/C3RA46390G

    Article  CAS  Google Scholar 

  38. Ponce-Reyes CE, Chanona-Perez JJ, Garibay-Febles V, Palacios-Gonzalez E, Karamath J, Terres-Rojas E, Calderon-Dominguez G (2014) Preparation of cellulose nanoparticles from agave waste and its morphological and structural characterization. Rev Mex Ing Quim 13:897–906

    CAS  Google Scholar 

  39. Cesar NR, Pereira-da-Silva MA, Botaro VR, de Menezes AJ (2015) Cellulose nanocrystals from natural fiber of the macrophyte Typha domingensis: extraction and characterization. Cellulose 22:449–460. https://doi.org/10.1007/s10570-014-0533-7

    Article  CAS  Google Scholar 

  40. Chan CH, Chia CH, Zakaria S, Ahmad I, Dufresne A (2013) Production and characterisation of cellulose and nano-crystalline cellulose from kenaf core wood. BioResources 8:785–794. https://doi.org/10.15376/biores.8.1.785-794

    Article  Google Scholar 

  41. Vinayaka DL, Guna V, Madhavi D, Arpitha M, Reddy N (2017) Ricinus communis residues as a source for natural cellulose fibers potentially exploitable in polymer composites. Ind Crops Prod 100:126–131. https://doi.org/10.1016/j.indcrop.2017.02.019

    Article  CAS  Google Scholar 

  42. Cadena Chamorro ME, Velez RJM, Santa JF, Otalvaro GV (2017) Natural fibers from plantain pseudostem (Musa paradisiaca) for use in fiber-reinforced composites. J Nat Fibers 14:678–690. https://doi.org/10.1080/15440478.2016.1266295

    Article  CAS  Google Scholar 

  43. Satyamurthy P, Vigneshwaran N (2013) A novel process for synthesis of spherical nanocellulose by controlled hydrolysis of microcrystalline cellulose using anaerobic microbial consortium. Enzyme Microb Technol 52:20–25. https://doi.org/10.1016/j.enzmictec.2012.09.002

    Article  CAS  PubMed  Google Scholar 

  44. Chiu HT, Huang SY, Chen YF, Kuo MT, Chiang TY, Chang CY, Wang YH (2013) Heat treatment effect on the mechanical properties and morphologies of poly (lactic acid)/poly (butylenes adipate-co-terephthalate) blends. Int J Polym Sci 951696:11. https://doi.org/10.1155/2013/951696

    Article  CAS  Google Scholar 

  45. Bandera D, Sapkota J, Josset S, Weder C, Tingaut P, Gao X, Foster EJ, Zimmermann T (2014) Influence of mechanical treatment on the properties of cellulose nanofibers isolated from microcrystalline cellulose. React Funct Polym 85:134–141. https://doi.org/10.1016/j.reactfunctpolym.2014.09.009

    Article  CAS  Google Scholar 

  46. Pan M, Zhou X, Chen M (2013) Cellulose nanowhiskers isolation and properties from acid hydrolysis combined with high pressure homogenization. BioResources 8:933–943

    Article  Google Scholar 

  47. Dzul-Cervantes M, Herrera-Franco PJ, Tabi T, Valadez-Gonzalez A (2017) Using factorial design methodology to assess PLA-g-Ma and henequen microfibrillated cellulose content on the mechanical properties of poly(lactic acid) composites. Int J Polym Sci 4046862:14. https://doi.org/10.1155/2017/4046862

    Article  CAS  Google Scholar 

  48. Sun JX, Sun XF, Zhao H, Sun RC (2004) Isolation and characterization of cellulose from sugarcane bagasse. J Polym Degrad Stab 84:331–339. https://doi.org/10.1016/j.polymdegradstab.2004.02.008

    Article  CAS  Google Scholar 

  49. Jonoobi M, Aitomaki Y, Mathew A, Oksman K (2014) Thermoplastic polymer impregnation cellulose nanofibre networks: morphology, mechanical and optical properties. Compos Part A Appl Sci Manuf 58:30–35. https://doi.org/10.1016/j.compositesa.2013.11.010

    Article  CAS  Google Scholar 

  50. Abraham E, Elbi PA, Deepa B, Jyotishkumar P, Pothen LA, Narine SS, Thomas S (2012) X-ray diffraction and biodegradation analysis of green composites of natural rubber/nanocellulose. Polym Degrad Stab 97:2378–2387. https://doi.org/10.1016/j.polymdegradstab.2012.07.028

    Article  CAS  Google Scholar 

  51. Graupner N, Ziegmann G, Wilde F, Beckmannd F, Müssig J (2016) Procedural influences on compression and injection moulded cellulose fibre-reinforced polylactide (PLA) composites: influence of fibre loading, fibre length, fibre orientation and voids. Compos Part A Appl Sci Manuf 81:158–171. https://doi.org/10.1016/j.compositesa.2015.10.040

    Article  CAS  Google Scholar 

  52. Cao X, Wang X, Ding B, Yu J, Sun G (2013) Novel spider web-like nanoporous networks based on jute cellulose nanowhiskers. Carbohydr Polym 92:2041–2047. https://doi.org/10.1016/j.carbpol.2012.11.085

    Article  CAS  PubMed  Google Scholar 

  53. Giri J (2019) Wheat stalk micro- and nanocellulose based degradable polymer composites: morphological, mechanical and degradation behavior, PhD Thesis, Tribhuvan University, Kathmandu

  54. Pandit R (2015) Templating nanostructures in epoxy resin using styrenic block copolymers, PhD Thesis, Tribhuvan University, Kathmandu

  55. Saiter JM, Dobircau L, Saiah R, Sreekumar PA, Galandon A, Gattin R, Leblanc N, Adhikari R (2010) Relaxation map of a 100 % green thermoplastic film. Glass transition and fragility. Phys B 405:900–905. https://doi.org/10.1016/j.physb.2009.10.011

    Article  CAS  Google Scholar 

Download references

Acknowledgements

JG sincerely acknowledges the Nepal Academy of Science and Technology (NAST) for providing PhD research grants. She further thanks German Research Foundation (DFG) and foundation “Akademie Mitteldeutsche Kunststoffinnovationen” (AMK) for offering financial supports for research stays in Germany.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ralf Lach or Rameshwar Adhikari.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 263 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Giri, J., Lach, R., Le, H.H. et al. Structural, thermal and mechanical properties of composites of poly(butylene adipate-co-terephthalate) with wheat straw microcrystalline cellulose. Polym. Bull. 78, 4779–4795 (2021). https://doi.org/10.1007/s00289-020-03339-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-020-03339-5

Keywords

Navigation